最新圆锥体的体积说课稿优秀(优质10篇)

  • 上传日期:2023-11-13 12:16:47 |
  • zdfb |
  • 10页

历史是人类经验的宝库,我们可以从历史中吸取教训和智慧。在写总结时,需要注重思考总结的目的和内容,使其有针对性和实质性。有时候,一个简单的微笑就能改变一切,让我们感受到生活的美好。

圆锥体的体积说课稿优秀篇一

一般的实验教学只注重实验的结果,而容易忽视在实验过程中对学生能力的培养。如能在实验过程中注意对学生能力的培养,不但能提高学生对知识的理解程度,而且能全面提高学生的综合素质。本文试以人教版小数第十二册《圆锥体积公式推导》为例,浅谈在实验中如何培养学生的各种能力。

一、布置实验内容,激发学生学习兴趣。

记得一位著名的教育家曾说过‘兴趣是最好的老师’。在实验教学过程中如能激发学生的学习兴趣,教学效果会起到事半功倍的作用。圆锥的体积这一节内容是通过实验来推导体积公式的。如何激发学生的学习兴趣是我们首要考虑的问题。所以一上课我便说明今天上一节实验课,要求全体同学都来参与实验操作,看谁做得最好。学生听后欢呼雀跃,学习热情异常高涨。

二、精心准备,巧设疑问。

在实验器材的准备和实验操作上,一定要做到精心设计,还要考虑周全。不但要使学生较容易运用器材做实验,而且要为推导公式打基础。在这一环节中,我首先把全班同学分成6个小组,然后让各小组分别推出一位小组长。由小组长领回实验器材。(每个组的圆柱和圆锥各有不同:1、4组的等底等高,但底面直径和高又有区别;3、6组的不等底也不等高;2组的等底不等高;5组的等高不等底。)让学生认真观察本小组的圆柱和圆锥特征,找出它们的异同;并把圆柱和圆锥的异同记录在实验记录本上。并想一想怎样通过圆柱求出圆锥的体积;大家都勇跃发言,情绪非常高涨。有的同学说用器具装上水,有的说装上沙大米等;有的说用圆锥装满倒进圆柱,有的说圆柱装满倒进圆锥。

三、分组实验,全面提高学生的各种能力。

分组实验能使更多的学生参与实验和讨论,更容易调动学生的学习积极性,更有利于培养学生的团队精神和竞争意识;使学生在实验中学会合作;以及通过实验加强对学生的动手能力、协作能力、分析归纳概括能力等的培养。在分组实验中,我的.具体做法:1、布置实验时说明这次实验看哪一组做得最好,在实验结束时给予表扬。2、在做实验时要求每一位学生都要动手,都要做不同的分工,同时也要配合好其他同学完成整个实验。这样通过各种附带的要求全面训练了学生的能力。

四、学生自由讨论,激发潜能增强自信心。

等底等高。

最后大家齐读三遍:圆锥体的体积是和它等底等高的圆柱体体积的三分之一。

通过实验教学,让我又看到天真活泼的。

[1][2]。

圆锥体的体积说课稿优秀篇二

1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的“做一做”及练习十二的第3、4、5题。

2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

4、教学目标:

(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

1、实验操作法。

波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

2、比较法、讨论法、发现法三法优化组合。

几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。

1、实验转化法。

有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

2、尝试练习法。

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

本节课我设计了以下五个教学程序:

1、复习旧知,做好铺垫。

(1)看图说出圆锥的底面和高。

(2)一个圆柱体零件,底面积是6.28平方厘米,高是3厘米,它的体积是多少?

这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

2、谈话激趣,导入新课。

圆锥体的体积说课稿优秀篇三

(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。

内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。

(二)、教学目标。

1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。

(三)教学重点、难点和关键。

难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。

以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。

2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。

(一)、导入课题。

1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。

这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。

2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。

(二)讲授新知。

1、(1)引入新课。

其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。

第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:v=1/3sh。

第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。

第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

练习:

填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。

2、教学应用体积公式计算体积(电脑出示题目)。

提高学习效率,掌握学习方法才能取得好的成绩,六年级数学下册说课稿的针对性很强,希望同学和老师都能够合理的使用!

圆锥体的体积说课稿优秀篇四

听了侯老师的《圆锥的体积》一课,收获很多,下面我想重点谈本节课的两点成功之处,希望能与大家一起探讨。

第一:为新知识的学习搭建合理平台。

主要体现在侯老师能够运用原有知识来推动新知识的学习,设计有奖问答和实验等手段,让学生大胆借鉴前面学习圆柱体积公式的方法来探究圆锥体积公式。利用迁移规律,让学生从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法,使新旧知识得到整合。这种借鉴的学习方法,不仅使本节课的教学变得轻松,同时有利于学生更深刻地理解和掌握这种学习策略,有利于学生的进一步学习和终身的发展。

第二:注重培养学生的实践能力。

这节课的重点是通过实验来探究圆锥体积公式的由来,侯老师主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做用装满小米的圆柱在空圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是特别设计了一组不等底或不等高的圆柱和圆锥来做倒米实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系。在实验前,让学生了解实验要求,并且提出三个实验目的:(1、圆锥的底面与圆柱的底面有什么关系?他们的高有什么关系?你是怎么知道的?2、圆锥的体积和与它等底等高的圆柱体积有什么关系?3、怎样计算圆锥的体积?计算公式是什么?)以实验目的为主线,让学生小组合作,通过动手操作,有眼睛观察,动脑筋思考,多种感官一起参与活动,由直观到抽象,层层深入,探索出圆锥体积公式的由来,从而理解和掌握了圆锥体积的计算公式,培养了学生的观察能力、操作能力和初步的空间观念,克服了几何形体公式计算教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,是一个探索者、研究者、合作者、发现者,并且获得了富有成效的学习体验。

不过这节课也存在一些不足,教学环节的衔接和时间的分配有些不恰当,教学方法没有多样化,欠缺改革创新。例如:在教学新课时,像传统教学那样,直接拿出圆柱和圆锥容器的教具,让学生根据实验要求和目的,进行倒米实验。我认为在实验前,一定要为学生创设良好的问题情景,如(你觉得圆锥体积的大小与它的什么有关?你认为圆锥的体积和什么图形的`体积关系最密切?猜一猜它们的体积有什么关系呢?你们想知道它们的关系吗?)通过师生交流、问答、猜想等形式,强化问题意识,激发学生的思维,使学生产生强烈的求知欲望。这时候,学生就迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣盎然。这样学生的思维被激活了,学习的积极性提高了,兴趣变浓了,课堂气氛变得热烈,那么教学效率,教学效果就可想而知了。

当然,我相信#老师通过这次的锻炼,在今后的教学道路上一定会越走越宽广。谢谢大家!

圆锥体的体积说课稿优秀篇五

圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形和长方体、正方体、圆柱体的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积的。内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱和圆锥之间的本质联系、提高几何知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识技能解决实际问题的能力。

教学目标是:

1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。

教学重点是:掌握圆锥体积的计算方法。

二、说教法。

根据学生认知活动的规律,学生实际水平状况,以及教学内容的特点,我在本节课以自主探究、小组合作学习方式为主,采用情境教学法,先通过情境感知并进行猜想,再通过操作验证,从中提取数学问题,自己总结归纳出圆锥体积的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的,同时在课堂上多鼓励学生,尤其注重培养学生敢于质疑的精神。

三、说学法。

本节课学习适于学生展开观察、猜想、操作、比较、交流、讨论、归纳等教学活动,为了更好的指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生去发现,体验创造获取新知,另一方面,也可以增强学生的合作意识,在活动中迸发创造性的思维火花。

四、说教学流程。

为了更好的突出重点,突破难点,我以动手操作、观察猜想、实验求证、讨论归纳法实现教学目标;教学中充分利用几何的直观,发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

1、创设情境,提出问题。

出示近似圆锥形的沙堆,接着让学生根据情境提出他们想知道的知识,很多学生都想知道沙堆的体积有多大,从而导出课题“圆锥的体积”。让学生自己提出问题,发现问题,激发了学生探索解决问题的`强烈愿望。

2、探索实验,得出结论。

a、动手操作。

把一个圆柱形木料的上底削成一点,让学生观察削成的圆锥体与原来的圆柱体有什么关系.要求先标出上底的圆心点,不改娈下底面,注意安全。培养学生初步的空间观念和动手操作能力。

b、观察猜想。

观察、比较圆柱体与圆锥体。突破知识点(1)“等底等高”;

让学生猜测圆柱体积与它等底等高的圆锥体积的关系,突破知识点(2)圆锥体积比与它等底等高的圆柱体积小、圆锥体积是与它等底等高的圆柱体积的1/2、圆锥体积是与它等底等高的圆柱体积的1/3;设想求圆锥体积的方法,学生独立思考后交流讨论,给学生提供了联想和交流的空间,培养了他们的创新能力。

c、实验求证。

学生动手实验,小组合作探究圆锥体积的计算方法,(1)用天平称圆锥体和与它等底等高的圆柱体木料的质量;(2)把圆锥体浸装有水的圆柱形水槽里量、算出体积;(3)用装沙或装水的方法进行实验。这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

通过学生演示、交流、讨论,得出圆锥体积的计算公式:

圆柱的体积等于与它等底等高的圆锥体积的3倍;

圆锥体积等于与它等底等高的圆柱的体积的1/3.

圆锥体积=底面积×高×1/3。

这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

3、应用结论,解决问题。

(1)以练习的形式出示例1。

通过这道练习,巩固了所学知识。

(2)基础练习:求下面各圆锥的体积。

底面面积是7.8平方米,高是1.8米。

底面半径是4厘米,高是21厘米。

底面直径是6分米,高是6分米。

这道题是培养学生联系旧知灵活计算的能力,形成系统的知识结构。

(3)出示例2。

通过这道练习,培养学生解决实际问题的能力,了解数学与生活的紧密联系。

(4)操作练习。

让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,这道题就地取材,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。

4、全课总结,课外延伸。

让学生说说这节课的收获,并在课后从生活中找一个圆锥形物体,想办法计算出它的体积。这样激发了学生到生活中继续探究数学问题的兴趣。

文档为doc格式。

圆锥体的体积说课稿优秀篇六

大家下午好!今天我将要为大家讲的课题是“基本几何体(圆柱圆锥)”。是高教版《机械制图》第三章正投影法和三视图第六节的内容。

1、教材的地位和作用。

今天所讲的内容属于第二版《机械制图》中第三章的第6节,整个这一章主要讲正投影法和三视图,正投影法是绘图和阅读机械图样的理论基础,这一节主要讲基本几何体的投影和表面点的求法,是正投影法的应用是今后学习的基础。

2、学情分析。

要想讲好一堂课,不仅要备教材,还要备学生,只有对授课对象也就是学生的知识结构、心理特征进行分析、掌握,才能制定出切合实际的教学目标和教学重点。在学习本节内容之前,在学习本节内容之前,学生已经掌握学习画平面立体三视图和求它们表面上点的投影的能力水平基础,知识水平不应有困难,能力水平也不应有困难,但要通过多做练习来达到熟练的目的,并且注意对个别学习困难学生的辅导。

3、教学目标。

知识目标。

1)、掌握圆柱、圆锥的形成和三视图特征;

2)、掌握在圆柱、圆锥表面上求点的投影的作图方法。

3)、熟知基本体尺寸标注的基本方法。

能力目标。

1)、能正确的画出圆柱、圆锥的三视图和在它们表面上求点的投影。

2)、具备正确标注基本体尺寸的能力。

素质目标。

培养学生的观察能力和学习能力及对空间形体的分析能力。

4、教学重点和难点。

[教学重点]。

1、圆柱、圆锥三视图特征和投影分析、视图画法、表面上点的投影;

2、看图、绘图、标注尺寸三大能力的培养。

[难点]。

空间概念的`建立和训练;圆锥表面上点的投影作图方法。

1.讲授法:通过老师的讲解,使学生掌握相关知识。

3.模型展示发:课前老师指导学生自己做些几何体帮助自己分析和观察。

教师的教是为了不教而教,这要求我们教师在授课中不仅要让学生听懂、学会,还要指导他们的学习方法,不能让学生离开老师这根拐棍就不会走路了,必须学会自主学习。在本节内容的讲授中要引导学生积极思考,善于提问,形成主动探究和协作学习的良好学习习惯。

1、复习导入(10分钟)。

复习回顾。

1)、简述棱柱、棱锥的视图特征和画图步骤,求棱锥表面上点的投影的方法;

2)、反馈、讲评作业批改情况;

3)、预习检测:圆柱和圆锥是怎样形成的?圆柱的三视图和四棱柱的三视图有什么不同?

导入新课。

简述本次课概念、要点、作用和地位;导出学习目标。

圆柱体和圆锥体都是机器零件上应用最广的基本几何体之一,本次课主要讨论两基本体的视图分析,并通过分析,熟练掌握其三视图的读、画和标注方法和能力。

2、新课教学(75分钟)。

1)、结合课件和模型同学们共同观察形体的特征。特别是引出并讲清“轮廓素线”(或称为转向轮廓线)的概念和意义。这为解决其表面交线(截交线、相贯线)的求作问题,提供依据和方法。

2)、根据立体模型和形体特征作立体的三视图,这当中主要突出作图步骤。

3)、利用特殊位置面具有积聚性的特性求圆柱表面点的投影和对圆柱进行尺寸标注。讲解时一定突出圆柱和圆锥三视图的特征,拓展学生的感性积累和空间想象力,回顾辅助线法求棱锥一般位置面上点的投影的方法,引出素线法(或纬圆法)求圆锥面上点的投影的作图方法。启发学生举一反三。

4)、用一些课堂练习巩固,教师点拨解答难点。改变立体的放置位置,多位之多答案,鼓励发散思维。

3、小结。

1)、结合课件和板书简述圆柱、圆锥的三视图作图步骤:画基准作俯视图、根据三等关系作主视图、最后作左视图。

2)、表面上求点的投影的基本方法。素线法(辅助线法)或纬圆法(辅助圆法)。

4、作业。

1)、习题:学生讨论完成习题集35、36各小题。

2)、思考题:p672、3、4各题。

3)、预习:截交线集中疑难问题。

基本几何体(圆柱圆锥)。

一、曲面立体的定义。

二、圆柱。

三视图分析作图步骤:画图。

1、基准。

2、俯视图。

3、主视图。

4、左视图。

表面找点作图充分利用积聚性。

三、圆锥。

三视图分析作图步骤同六棱柱、画图。

表面点的投影充分利用顶点作辅助线和辅助面。

圆锥体的体积说课稿优秀篇七

(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。

内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。

(二)、教学目标。

1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。

2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。

3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。

(三)教学重点、难点和关键。

重点:理解和掌握圆锥体积的计算公式。

难点:理解圆柱和圆锥等底等高时体积间的倍数关系。

关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。

以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。

小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。

2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。

(一)、导入课题。

1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。

这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。

2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积。

(二)讲授新知。

1、(1)引入新课。

其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。

第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:v=1/3sh。

第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。

第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

练习:

填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是()立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是()立方厘米。

2、教学应用体积公式计算体积(电脑出示题目)。

圆锥体的体积说课稿优秀篇八

1、本节教材是义务教育小学数学(人教版)六年制第十二册第三单元《圆柱、圆锥和球》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例1、例2,相应的“做一做”及练习十二的第3、4、5题。

2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。

4、教学目标:

(3)德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。

5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。

学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。

著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:

1、实验操作法。

波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。

2、比较法、讨论法、发现法三法优化组合。

几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。

“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”这是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此我在讲求教法的同时,更重视对学生学法的指导。

1、实验转化法。

有些知识单凭解说是无法让学生真正理解的,只有通过实验,反复操作,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。

2、尝试练习法。

苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在教学两道例题时,让学生尝试自己独立解答,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。

本节课我设计了以下五个教学程序:

1、复习旧知,做好铺垫。

(1)看图说出圆锥的底面和高。

(2)一个圆柱体零件,底面积是6.28平方厘米,高是3厘米,它的体积是多少?

这两道题是复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。

2、谈话激趣,导入新课。

圆锥体的体积说课稿优秀篇九

作为一位优秀的人民教师,总不可避免地需要编写说课稿,认真拟定说课稿,那么说课稿应该怎么写才合适呢?以下是小编收集整理的六年级数学《圆锥体积计算》说课稿,仅供参考,大家一起来看看吧。

本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。

这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。

学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。

根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。

知识目标:

1、结合具体情境和实践活动,了解圆锥的体积或容积的'含义,进一步体会物体体积和容积的含义。

2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。

3、能运用圆锥体积的计算方法,解决有关实际问题。

能力目标:

培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。

情感目标:

能积极参加实验活动,培养学生探索的精神和小组合作的意识。

难点:理解圆锥体积与圆柱体积的关系。

关键:经历“小实验”活动,在活动中发现规律。

本节课,在教法和学法上力求体现以下两方面:

1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。

2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。

等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。

环节一复习铺垫。

回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。

环节二探索新知。

首先出示教材中的情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。

探索圆锥体积计算方法。分为以下几个步骤完成。

步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。

步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。

步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。

圆锥体的体积说课稿优秀篇十

圆锥母线:圆锥的侧面展开形成的'扇形的半径、底面圆周上任意一点到顶点的距离。

圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。

您可能关注的文档