2023年小数的近似数教学反思(模板15篇)

  • 上传日期:2023-11-11 16:22:30 |
  • zxfb |
  • 10页

沉淀下来的智慧和经验,值得写成一篇总结。总结需要有具体的目标和任务,明确总结的对象和范围,避免泛泛而谈或内容杂乱。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是一些总结写作的技巧和方法,希望对大家的写作有所帮助。

小数的近似数教学反思篇一

本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。

成功之处:

1、复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数9864***490088,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

2、联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

3、深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。

不足之处:

1、学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。

2、对于典型题中形如9、956保留整数、保留一位小数,学生还是存在不知如何进位的问题。

小数的近似数教学反思篇二

《求小数的近似数》教学反思二这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解保留几位小数;精确到什么位;省略什么位后面的尾数这些要求的含义;表示近似数的时候,小数末尾的0必须保留,不能去掉;连续进位的问题。

教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子小豆豆测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.9840.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.9841.0后,让学生讨论0能不能舍去,使学生明确了0如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加0。最后引导学生总结出求小数近似数的方法。

虽然求小数的近似数的方法与整数的近似数相似。让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。但是一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至连环进位,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。

但我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。

小数的近似数教学反思篇三

已学内容:求一个小数的近似数,把不是整万或整亿的数改成用“万”或“亿”作单位的数。

反思内容:学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

第一:以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

第二:前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有改变数的大小。

第三,多讲多练,在不断的重复练习过程中,让学生自悟。

小数的近似数教学反思篇四

教学从生活出发,让学生感受数学与实际的联系。在引入环节,在菜市场买菜时,总价是8.53元,而售货员只收8元5角钱,这就是在求8.53这个小数的近似数。在创设情境环节,也结合生活实际,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的'引入新课,让学生感受数学与实际的联系。这样很自然地引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,再出题让学生说出把7.85元精确到元、精确到角分别是多少钱,这样把学习求一个小数的近似数的知识还原与生活,应用与生活。在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.664≈0.66后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.974≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

小数的近似数教学反思篇五

在数学过程中,我充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。在教学中,我从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。

在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的.近似数”的理解。我善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。

小数的近似数教学反思篇六

《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据——也就是四舍五入法,从而引入小数近似数的教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的',开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我觉得:学生掌握得不是不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在“冷场”的时候多调动学生的积极性。

而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。

小数的近似数教学反思篇七

《求小数的近似数》教学反思二这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解保留几位小数;精确到什么位;省略什么位后面的尾数这些要求的含义;表示近似数的时候,小数末尾的0必须保留,不能去掉;连续进位的问题。

教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子小豆豆测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.9840.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.9841.0后,让学生讨论0能不能舍去,使学生明确了0如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加0。最后引导学生总结出求小数近似数的方法。

虽然求小数的近似数的方法与整数的近似数相似。让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。但是一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至连环进位,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。

但我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。

将本文的word文档下载到电脑,方便收藏和打印。

小数的近似数教学反思篇八

教材是用一位小朋友的身高的近似数来引入新课的:豆豆的身高是0.984米,小芳说约是0.98米,小明说约1米,通过说法的不同引出争论。我先和孩子们一起复习了求整数近似数的方法——四舍五入法,为新课做好准备和铺垫。然后通过类比的方法,以生活中常遇到的购买商品这项事情为例,引出语句“省略十分位、百分位、千分位……后面的尾数”,接着让学生试着说出这些语句还可以怎么说,及时小结还可以说成“精确到什么位”、“保留几位小数”,最后让学生们自己看书上的例题,并做相应的习题。

整节课下来,我觉得比较成功的地方有以下几点:第一,引导学生理解保留几位小数的含义:保留一位小数就是精确到十位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……我是尽量让学生自己说出这些语句的,小结后还让学生熟读,再闭上眼背诵。第二,让学生自主探索“保留整数”的含义。在让学生独立阅读课本以后,我让学生试着把豆豆的身高保留二位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出规律。第三,让学生知道为什么要学习求小数的近似数。这也是我比较看重的,要区别“填鸭式”教学,这个环节最有说服力。

不足之处也很明显:虽然课堂上孩子们踊跃发言,但是,这样的课堂进程对我这样的课堂驾驭能力差的老师是个负担,使练习量大打折扣,所以作业情况有点两极分化,还好,作业完成得不太好的孩子都是日常生活中听说反应比较缓慢的,约占全班人数的十分之一。他们出现较多的问题是不能准确写成符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练,可能因为前几节课刚讲授完“统一单位”,没有给他们好好进行小复习。小数这个单元内容比较多,更需要及时复习。通过教参,我还发觉了遗漏了一个环节:“保留不同位数的小数求得的近似数是否相同?如果不同,哪个近似数会更精确一些?”

文档为doc格式。

小数的近似数教学反思篇九

教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。

课堂上,将1.666……怎样表示更恰当。学生呈现了2元,1.7元,因为在之前的练习中我们已经接触了给物体正确标价.当学生提出这样的观点的时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数.故,马上有学生想到改为1.70元.我顺势板书1.70元.看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1.70怎么来的?”我们继续倾听学生自己的理解.在表达的过程,学生自己也意识到了错误所在,同学们也明白了错误根源.此时我提出,“以元为单位,小数部分保留了几位?”“省略的是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。

掌握了保留方法之后,再引导学生区分在求近似数时1.0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。

最后讨论取值范围。

整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。

小数的近似数教学反思篇十

本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法——四舍五入法,并举例说明了具体做法,让学生明确了整数的尾数是改写成“0”。在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。我个人认为本节课最成功之处就是让学生比较了小数与整数近似数的方法,学生在掌握了新知的同时,对学过的知识也做了较好的复习。

小数的近似数教学反思篇十一

学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

1、以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

2、前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

3、多讲多练,在不断的重复练习过程中,让学生自悟。

小数的近似数教学反思篇十二

这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用“四舍五入法”求小数的近似数。

在学习之前,我先让学生复习了求整数的近似数的方法——“四舍五入法”,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解保留几位小数;精确到什么位;省略什么位后面的尾数这些要求的含义;表示近似数的时候,小数末尾的0必须保留,不能去掉;连续进位的问题。

在创设情境环节,结合教科书的主题图,创设了邻居家的孩子小豆豆测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的`尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论0能不能舍去,使学生明确了0如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生讨论了小数部分要不要加0。最后引导学生总结出求小数近似数的方法。

小数的近似数教学反思篇十三

师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。

生看书自学课文第一、二自然段。

师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。

全班交流。

生:我知道另一种数叫近似数,它表示大概有多少。

生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。

生:我来说,我家离学校骑车大约要10分钟。

……。

师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。

学生再次看书自学。

生:我知道用四舍五入法可以求一个数的近似数。

四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。

生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。

生:我说289约等于300,我是看十位上的.8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。

生依次回答,对4499出现的错误较多,认为应该约等于5000。

师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。

生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。

师:弄懂了四舍五入的意思,我们一起来练一练。

学生做练习第一题。

师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。

生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。

师:一起来估算一下328×4约等于多少?

生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。

课后反思。

小数的近似数教学反思篇十四

本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法――四舍五入法,让学生明确了整数的尾数是改写成“0”。同时感受求一个小数的近似数跟求一个整数的近似数实质是一样的.在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的.,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

教学过程中,我让学生采取划一划,框一框的方式,很好解决了教学的难点,例:将3.256保留一位小数,先从左往右划线到十分位的下方3.256,再框起尾数的最高位3.256,看是否满5,依据“四舍五入”原则觉定是否进“1”。

小数的近似数教学反思篇十五

改写和省略是非常容易混淆的一对概念,刚讲完学生课后错误较高。因此我引导学生研究了这两个概念的区别:让学生自主讨论、相互交流。最后总结得到:

1、改写不改变数的大小,省略改变了数的大小。

2、改写使用直等号,省略使用约等号。

3、题型也有区别,改写题型有“将下列各数改写成用万或亿作单位的数”,而省略的题型有“省略最高位(或万位、亿位)后面的尾数求出近似数”,应根据不同要求,写出正确结果。

此外,要保证将非整万的数用“四舍五入”的方法省略万位后面的尾数改写成以“万”作单位的近似数和将非整亿的数用“四舍五入”的方法省略亿位后面的尾数改写成以“亿”作单位的的近似数正确率高,必须做到“一找”、“二看”、“三用”。“一找”,找到“万”位或“亿位”。“二看”,看省略部分的最高位上是几。“三用”,采用“四舍五入”的方法取近似数。

总之,数学来源于生活,学生的生活中有许多数学问题,只有让学生在熟悉的、感兴趣的问题情境中,亲自探索总结,才能使他们更好的感悟、学习、和理解新知。

您可能关注的文档