最新三角形的内角和教后反思(优质17篇)
文件格式:DOCX
时间:2023-11-10 08:13:49    小编:zdfb
最新角形内角和教后反思 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

最新三角形的内角和教后反思(优质17篇)

  • 上传日期:2023-11-10 08:13:49 |
  • zdfb |
  • 10页

总结可以帮助我们总结经验,提炼出有效的方法和技巧。在写作时,我们要尽量避免使用过于复杂的词汇和长句。看看别人的总结经验也能帮助我们更好地写出自己的总结。

三角形的内角和教后反思篇一

学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:

怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。

任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。

研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。

三角形的内角和教后反思篇二

《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。然后由这一结论练习各种题型的练习。经过2次的试课,多次的修改,我最终的课有一下特点。

怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在即将到来的五一劳动节为切入点,在学生感兴趣的旅游话题中,由欣赏世界的图片中引入三角形,由金字塔顶端度数的求法中启发学生思考“三角形的内角和真的是180度吗,所有三角形的内角和都是180度吗?”。由两个三角形的争论使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。

“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层次是判断三角形的三个角是否是一个三角形的内角,第二层练习是已知三角形两个内角或一个内角的度数,求另一个角。第三层开始就有了一定的难度,层层深入。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。最后是让学生用学过的知识解决身边的问题打碎的三角形玻璃该取哪一块才能拼出与原来一样的玻璃,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

本着“学贵在思,思源于疑”的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

另外,本次课也有不足之处,首先是语言不够准确和精炼,比如发现了三角形内角和的秘密而不能说”发明”,还有量一量是可以验证三角形的内角和的,只不过存在误差,不是很科学,而在我的口误之下变成了“不能”。其次是对于最后出现的小问题我没有足够的教学机智来好好的融错。如果对此借机引导是由误差造成的,并借此教育学生一点点的马虎就会导致不一样的结果该有多好。还是缺少教学机智。

三角形的内角和教后反思篇三

笔者在执教四上数学时,接到数学片开课的通知,反复思量最后选择了四下的《三角形的内角和》这一教学内容。一开始有的老师认为不可以,因为四下的《三角形的内角和》这个内容之前需要先上三个内容,即:认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边。如果给四上的学生上这个内容就违背了教材内容编排的有序性和知识的连续性。但是,难道一定要了解了三角形的特性,对三角形进行分类,知道三角形的三边关系之后再来研究三角形的内角和?难道就不能在学生对三角形有一定的感性认识的基础上,学习了角的分类和会量角之后,让学生去探究三角形的内角和进而研究多边形的内角和?最后经过反复思考,笔者作大胆的尝试,最终还是选择了这一教学内容。因为我们不能过于迷信我们的教材,不能盯死一套教材,不能过分的依赖教材。正如开头时讲到的,教材是滞后的,生活是现实的,我们教师则应该勇于探索,敢于实践,充分发挥教材的优势,把握教材的体系,做教材的开拓者。

新一轮基础教育课程改革,改变了课程内容难繁偏旧和过于注重书本知识的现状,赋予教师更多的权力,教师不仅仅是课程的实施者,同时还是课程的开发者。而把握教材提出自己的教学目标和教学重难点是对一个教师最基本的要求。新课程背景下的数学教师要转变观念,不能成为教材的奴隶,而要对教材内容进行开发,变教材是学生的世界为世界是学生的教材,与学生共同讨论、探索,在不断的积累中形成开放而充满活力的课堂。

试教下来,发现对教学目标的定位是比较明确的,重点放在让学生体验验证三角形的内角和等于180度这一数学探究过程。但对于教学重难点的把握是经过反复修改而形成的。因为,这一内容如果只是让学生知道三角形的内角和那么就没有深度,而本节课的深度究竟应该挖到哪里呢?事后发现,四年级上学期的学生在教师的引导帮助下,能够借助三角形的内角和等于180度进而得出四边形的内角和等于360度,但是,如果要学生进而得出五边形,六边形的内角和,最终发现所有多边形内角和的计算规律,在这一节课上是实现不了的。所以,本节课的难点定位是学生能够根据三角形的内角和等于180度,知道可以将四边形变成两个三角形,一个三角形的内角和等于180度,那么四边形的内角和等于360度。

肖川认为“对教师而言,上课是与人的交往,而不单纯是劳作;是艺术创造而不仅仅是教授;是生命活动和自我实现的方式,而不是无谓的牺牲和时光的耗费;是自我发现和探索真理的过程,而不是简单地展示结论”。

所以,为了实现教学过程的创新与生成,笔者经过多次的实践,本节课最后的教学过程设计方案如下:从平面图形引入,然后通过长方形来揭示内角概念,通过探究长方形的内角和是多少?自然引入三角形有几个内角,三角形的内角和是多少?你们确定吗?让学生大胆的猜想,学生都能想到三角尺中的两个特殊的三角形的内角和等于180度,然后追问:我们手中的三角尺的内角和是180度,是不是说明三角形的内角和都等于180度?这样通过特殊三角形到一般的三角形,引导学生自主探索三角形的内角和是多少度。学生大多认为通过测量可以来验证,但是活动之后用测量的方法难免有误差,于是老师就追问:有的同学量出来是正好是180度,有的是接近180度?这样你能确定三角形的内角和等于180吗?那么怎么办呢?你有什么其他的好办法呢?接着教师引导“如果三角形的内角和是180度,那么把它的三个内角拼起来,你觉得会拼成什么?”引出了用拼一拼一方法将三角形的三个内角拼成一个平角。而学生对于怎么拼还有疑惑,于是教师就在黑板上演示用撕的方法将三个内角拼在一起,然后再让各小组试试用拼一拼的方法,最后在交流的时候特地找那些量的不准的小组进行展示,所有的小组拼出来的结果都是等于180度,这样就能得出我们想要的结论。练习环节先是知道其中的两个角求第三个角,交流时体现了算法的多样化,然后是让学生用两块完全一样的三角形拼成一个图形,这样的题目比较有思考的空间,也有创意性,因为拼成的图形可以是大三角形,长方形,正方形,平行四边形。如果是看成大三角形,那么这个三角形的内角和还是等于180度,即又巩固和深化了三角形的内角和等于180度,而长方形,正方形的内角和在一开始上课时已经知道是360度,那么现在我们学习了三角形的内角和等于180度之后,现在我们可以将它们的内角和看成什么呢?学生会说看成两个一样的三角形,两个三角形的内角和相加等于360度。而接着追问平行四边形的内角和呢?学生也能自然的说出。最后追问一个任意的四边形的内角和呢?有学生会说,可以看成两个三角形,但这两个三角形的大小形状不同。但是,任意三角形的内角和都等于180度,所以四边形的内角和都可以看成是两个三角形的内角和,进而得出了四边形的同角和,同时发了练习纸引导学生在课外探究五边形、六边形的内角和是多少。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神,顺利的达成了教学目标,解决了教学重难点。

几节课上下来,笔者越来越肯定,教师完全可以做教材的开拓者,只要合理的对教材进行了整改分析,巧妙的设计练习,准确的了解学生的认知起点,反复的琢磨教学过程并进行创新,对学习材料进行思考与选择,就能打破教材的编排次序,让学生重新整合知识,实现知识的优化与提升,最终促进学生创造与发展。

三角形的内角和教后反思篇四

整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:

为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。

在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。

本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。

学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。

三角形的内角和教后反思篇五

《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。

“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。

在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。

三角形的内角和教后反思篇六

“合作探究,实验论证”生动地诠释了新教育的基本理念,我在本节课新知识传授时很好的把握三个环节。

一、通过两个三角形因为内角和大小吵架导出新课,提出问题到底是谁的内角和大,激发了学生的求知欲,和学习兴趣。

二、让学生先猜想内角和的大小。教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

三、动手操作验证猜想。要求学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。

四、练习设计,由易到难。

这节课在练习的安排上,我注意把握练习层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角度数,求另一个角。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决,在没有告知直角三角形的另一个角时,如何求出第三个角。

通过一节课的学习,同学们基本掌握三角形内角和的知识,并能运用知识点进行习题练习。小组合作也激发了学生们的学习兴趣,效果不错!

三角形的内角和教后反思篇七

我所讲的课题是“三角形内角和定理的证明”。我认为本节的重点是通过证明三角形的内角定理让学生感悟出辅助线的做法。

我的导入市让学生感受一些动手操作实验中误差,从而进一步认识到证明的必要性,引出本节所要研究的课题“三角形的内角和定理”,这个定理我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了——三角形内角和定了的证明。证明的过程中,我通过课前准备好的三角形道具,让我的学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,那么这个定理的证明过程就完全展示出来了,然后师生共同把我们自己的做法转化成准确的数学语言加以证明,在证明的过程之中,辅助线就自然而然的运用到其中。这时,本节的重点和难点也就自然而然地被突破,要让学生感觉辅助线不是由老师强加告之而明白证明的方法,而是由学生自己在拼图的过程中亲身感悟出来的知识。

课后我认为本节中的成功之处有以下几点。

4、在本节“三角形内角和定理”的应用阶段,我设置了“你来讲”题目,而且此类题目的要求是哪位同学想尝试一下,等学生站起来准备好之后,教师再把题目投影出来,不仅要锻炼学生的思维速度,而且也间接地培养了学生的临考能力,同时得到结果后要为同学们讲解本题的解法。我个人认为,给同学们讲题目的过程中收获是更多的。

5、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。

课后我认为本节课中的不足之处:

3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有给学生充足的自主权,没有把课堂还给学生。针对自己的优点和缺点,在以后的教学工作中要注意积累和进步。

三角形的内角和教后反思篇八

1、通过直观操作的方法,探索并发现三角形的内角和等于180度,在实验活动中,体验探索的过程和方法。

2、能运用三角形的内角和的性质解决一些简单的问题。上课时,我先出示了书本上的图片,大的三角形对小的三角形说:“我的三个角的和一定比你大”。问学生是这样的吗。起先就有同学问了,什么是内角和,我稍微解释后,同学们就开始些争论了,带着这个问题,我让孩子们自己在练习本上画三角形(什么样的三角形都可以)。然后让他们量出三个角的度数,并求出他们的和。我在巡视的过程中,选出了一些同学的三角形以及他们测量出来的结果。也发现有些同学已经忘记量角的方法,或者量的过程不认真,导致结果出错,我在巡视的过程中就给予纠正。

最后,同学们也都发现,大小、形状不同的三角形,其内角和都在180度左右。然后让他们看智慧老人的一句话“实际上,三角形三个内角和就是180度,只是因为测量有误差”,所以有些同学量出来的并不刚好是180度。那么智慧老人的话有没有道理呢?我抛出了这么一个疑问,让同学们想办法证明。最开始,有人提出了用折的方法,我就拿出了事先准备好的三角形,让他折给大家看,发现三个角拼在一起后就成了一个平角,也就是180度。但是问到还有没有其他方法的时候,就没有同学回答了,时间也快到了,我就自己匆匆忙忙的把先撕后拼的方法给讲了。之后讲了一道内角和的应用,然后就让他们下课了。

在这节课的过程当中,我对自己不满意的地方有几个,主要是后半节:

首先,同学在用折一折的方法证明三角形的内角和时,虽然上台演示的同学有折出来,但速度不是很快,而且但并不是没个同学都能折出来的,所以在上面的同学折出来后,我觉得让其他同学也试一下,肯定有人没办法,所以要提醒他们,折时要注意平行折。这样也会更有说服力。但是我也没让大家准备三角形,也就没办法了。这里我更体会到提前备好一周的课的重要性了。这也是我们校长和教导时常强调的,以后一定得改正。

其次,让同学们想办法用令一种方法证明时,我显得急躁了,虽然同学们没有一下子想出来,但是我也应该多给他们些时间,让他们多思考,或者稍微给点提示。我想起上学期中关村的老师上认识角的时候,就很耐心的给孩子们时间去探索,去发现。所以在课堂的时间安排上,我还要思考如何才能更加合理。

最后,也是我经常在思考的。为什么我们班发言的情况总是那么不如人意呢。没次到我的师傅班上听课时,我都发现他们班孩子充满了激情,而到了我们班,情况就大大的改变呢?是提问的方式有问题吗?不过可能有一点,是因为我在课堂当中对于学生的回答激励性的语言太少了,导致有部分人失去热情,还有就是自己上课总是急于求成,让孩子们失去了思考的机会,也使有些人已经懒得思考了。在这方面我以后还得大大的改善才行。

三角形的内角和教后反思篇九

这节课以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”地学习到新的知识。让学生经历观察,实验,猜想,验证等教学活动过程,培养他们的合情推理能力和初步的演绎推理能力,能有条理地,清晰地阐述自己的观点。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

我在本节课的教学中,通过猜想,验证的方法,引导学生思考,激发学生的`学习兴趣。

学生在问题面前是退缩还是前进,要看教师如何有效德指引。我预先为每位学生准备了一些不同的三角形,让他们经历观察,实验,猜想,验证等教学活动过程,同时提出俩个问题:第一,你选用什么三角形,采用什么方法来验证?第二,经过操作得到了什么结论?学生分小组对大小不一的三角形进行验证,经历量,拼,折等方法来操作,从而得到“三角形的内角和是180度”这一结论。整个过程学生是自主的,积极的,通过操作,思考,反馈等过程真正经历了有效德探究活动。

三角形的内角和教后反思篇十

《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

三角形的内角和教后反思篇十一

《三角形的内角和》是人教版四年级下册第五单元的内容,是学生学习了三角形的特性及分类的基础上学习的。本节课我主要设计了四个环节,提出问题——合作探究——学以致用——分享收获。

第二个环节是合作探究三角形的内角和,这个环节里学生小组合作,通过量、撕、折等方法,验证三角形的内角和是180。

第三个环节是学以致用,我设计了三个闯关游戏,第一关是已知两个角的度数求第三个角的度数,第二关是等边三角形、等腰三角形和直角三角形一个角的度数,第三关是两个相同的三角形组成一个大三角形后,大三角形的内角和是多少度。

反思师生互动的过程,本节课的优点有:

1、本节课中学生探究欲很高,课堂研讨气氛浓厚。

2、小组合作中,学生们发现测量时,三角形的内角和不一定是180,培养了学生事实求是的科学态度,此时学生能运用转化思想解决问题,从而提升了学生解决问题的能力。

3、量、撕、折的动手实践活动,不仅提高了学生的动手操作能力,而且让在动手的同时动脑、动口,积极参与知识学习的全过程,鼓励学生多观察、动脑想、大胆猜、勤钻研,增强了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

4、课堂练习题的设计层层递进,以及实践活动的设计,让学生体验了学以致用的快乐,获得成功的喜悦。

5、学生在分享收获中,各抒己见,提升了自己的表达能力和归纳能力。

本节课需要改进的地方:

1、在合作探究环节,我提出问题:怎样来验证三角形的内角和?此时学生提出了测量的方法之后,我没有给学生留有足够的思考空间,而是直接介绍了“撕、折”的方法,让孩子们进行探究,课堂中缺少了更多的生成。

2、课堂中设计了实践活动环节,学生们非常感兴趣,但是由于时间不充足,有些学生理解的不够充分,这个环节学生的参与度不够,考虑可以放到课后思考。

三角形的内角和教后反思篇十二

我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。

教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的数学教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,每一个教师既会有融教学科学与艺术相结合的佳作,也难免出现有失水准的拙课。通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。

本节课的教学先通过三角形王国的小矛盾,让学生角色扮演导入新课,激发学生学习兴趣,进而引出“三角形内角和是180度”的猜想,然后组织学生自主探究、操作,在实践中验证猜想,得出结论。然后利用已学知识,解决相关问题。

本节课学生学习积极性比较高,以下一些方面还是做得比较好的:

教学设计环节紧凑,思路清晰。用了大量时间让学生小组进行实践操作,进行小组实验,让他们自己感知探索出三角形内角和,注重了学生操作能力和小组合作探究能力的培养。

1、用了量、算、拼,折各种不同的方法,让学生从不同角度探索,发现思考,都可以得出三角形的内角和是180°的结论。感受数学的严谨和魅力,也使得这个知识点的理解更加透彻。

2、当完全放手让学生实验操作调整为要求明确以后,教师适当进行一些演示,如果学生还不能完成操作,则由教师完成,只要学生能够拿着一个拼合好的图形进行观察,我就把课堂节奏掌控住,把他们的注意力引到定理的证明过程上,很好的完成教学目标。

3、设计了不同层次的练习题,判断题都是学生平时容易出错的题目,在课堂用直观的课件显示出来,使学生印象深刻。然后逐步加深难度,到最后的思考题,使得不同层次的学生都学有所得。

1、传统的教育模式让学生和老师都习惯于填鸭式的学习方法,学生总是被动的接受知识。让学生自己实践操作找结论,部分学生却不知从何做起,没有自己动脑主动学习的习惯。今后应加强学生自主思考能力的培养。

在拼一拼的活动中,老师应该让学生先把三个角标号,撕开后再拼。在拼成平角后要用量角器或者直尺测量一下,看拼的图形是不是平角,要用严谨的态度对待,而不能光凭眼睛来判断。

2、在进行拼、折活动时,部分学生不知道怎样折成一个平角,撕开之后就找不到要拼的角的时候,老师就应当马上去帮助,去指导。当学生体验认知过程时,一定要让他们感受学习的愉快,获得成就感,只有这样才能激发学生学习数的兴趣,学好数学的信心。

3、时刻要注意自己和学生语言、动作的规范,体现数学的严谨性。在学生读题,回答问题的时候,要说出度数单位。在练习,书写时也要注意度数单位,强调格式。

由于是借班上课,对学生了解不够,在课上没能以学生为主,有的内容完全可以交给学生讲解,我没能及时体察到这一点,效果不是很好,课堂气氛没能调动起来,一位老师说的好,公开课就是表演课,但主角应该是学生,老师只能做导演而不能替代学生的角色。上完课后,很多老师给了我许多宝贵的建议,比如:我上课时表情呆板于第三个练习题,讲解不够详细,大部分学生估计没听懂,我没能做到及时根据学生的表情、应答人数等细节及时调整讲题的速度??,在聆听诸位老师的点评时,有时让我有种茅塞顿开的感觉,非常感谢各位老师的精彩点评。

作为一名青年教师,我觉得教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的政治教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的'“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。

教学过程中达到的预设的教学目的、良好的教学方法、我都会在课后记下来,供以后教学时参考使用,也可在此基础上不断改进、完善、推陈出新。同时对课堂教学中存在的疏漏失误之处,也要对它们进行系统地回顾、梳理,作出深刻的反思、探究和剖析,使之成为今后再教学时的参考物,类式的错误不在发生。我执教的本节课在小组合作交流讨论及评价等方式来组织教学活动时,做得还不够,收放得不够自如,同学也没有完全养成良好的行为习惯,不能高质量地完成某些教学环节,但是,我觉得一个成功的好老师就是要在教学上敢于突破和创新,我应该大胆放手让学生去操作、去探索。

叶圣陶先生曾经说过:“教是为了不需要教,教师不但要教给学生知识,更要交给学生思维科学的学习方法。”在素质教育改革的今天,在新形势下,作为一名青年教师,在指导学生如何更好的学习上,还任重道远。但我会坚持以对学生负责为中心,不断学习先进的教学理念和育人方法,不断学习反思,在反思中不断提高,并结合课堂教学实践,为追求高效课堂而不断完善自我。相信“雄关漫道真如铁,而今迈步从头越”,我会在今后的教学岗位上,“路漫漫其修远兮,吾将上下而求索”。

三角形的内角和教后反思篇十三

“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。

一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。

三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。

《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力.

“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。

在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。

三角形的内角和教后反思篇十四

三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。

在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。

本课新知识传授很好的把握三个环节:

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。

让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。

“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。

作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!

三角形的内角和教后反思篇十五

1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。

3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。

1、什么是内角?

5、用正方形纸折几次,才有8个三角形呢?

6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?

1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。

2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。

今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:

孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。

每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!

三角形的内角和教后反思篇十六

新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

1、学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。

2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。为验证三角形内是180度做铺垫。

3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。

本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。

三角形的内角和教后反思篇十七

课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。

在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;

第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

本节课不足之处:

1、学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。

2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。

3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足,这是我今后要特别注意的一个方面。

本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。

您可能关注的文档