最新三角形的中位线说课稿(精选16篇)

  • 上传日期:2023-11-12 23:27:19 |
  • ZTFB |
  • 14页

总结的过程中,我们应该注重事实的客观性和准确性。需要梳理和整理好相关材料和资料,为写总结做好准备。为了帮助大家更好地写出完美的总结,我整理了一些相关范文供大家参考。

三角形的中位线说课稿篇一

(一)、内容:《三角形的特性》是人教版义务教育课程标准实验教科书80-81页内容,这部分内容包括三角形的定义,三角形各部分名称,三角形的稳定性等。学生通过上册对空间与图形内容的学习对三角形已有了直观认识,能够从平面图中分辩出三角形。例题1:是有关三角形定义的教学,着重是让学生在“画三角形”的操作活动中进一步感知三角形的属性。抽象出概念。例题2:着重于三角形的重要特性是“稳定性”,在生活中有着广泛应用。它可以让学对三角形有更为全面和深入的认识。同时有利于培养学生的实践精神和实践能力。

(二)、教学目标:

1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

2、通过实验,使用权学生知道三角形的稳定性及其在生活中的应用。

3、培养学生观察,操作能力和应用数学知识解决实际问题。

(四)、教学难点:在三角形内画高。

(一)、情境教学法。

在特定的情境中进行学习,能激发学生兴趣,激活学生思维。为了解决问题,学生会主动探索新方法,从而将问题的解决和方法融为一体,这样安排有利于密切数学与生活的联系。

(二)、操作讨论法。

在动手操作,讨论交流时学生各抒己见,这样即启迪学生思维,又能增强其合作意识。学生动手、动脑,在探索发现问题的过程中解决问题,真正体现了以学生为主体的教学理念,教师在课堂上起到了组织者,引导者与合作者的作用。

(一)、自主探究《数学课程标准》指出有效的数学活动不能单纯地进行模仿与记忆,动手实践,自主探究与合作交流是学生学习数学的重要方法。因此在教学中我让学生通过动手实践,亲身体验。如:画一画、议一议、说一说等活动发现新知、建构新知,从而掌握新知,培养合作意识和探究品质,发展思维能力和解决问题的能力。

(二)、学以致用,在学完新知后,我及时引导学生运用所学知识解决生活中的一些实际问题。这样,不仅增长学生智慧又使学生进一步感受到了数学与生活密不可分的关系,增强了学习数学兴趣和信心。

(一)、联系生活,情境导入。

1、出示80页情境图,学生观察,发现描述三角形。

2、说一说:生活中还有哪些物体上有三角形。

3、课件出示生活中常见的物体上的三角形。

4、导入并板书课题。

(二)、操作感知,理解概念。

(1)、引导学生用自己的话概括什么叫三角形?

(2)、议一议:下面的图形是不是三角形?

(3)、讨论:哪种说法更准确?

(4)、指导阅读80页“三角形”定义。

(1)、出示三角形屋顶的房子。(问:你能测出三角形房顶的高度吗?学生动手操作)。

(2)、你是怎么测量的?(学生交流汇报)。

(3)、讲解测量过程?(得出:三角形高、底的概念)。

(4)、出示81页三角形(问:这是这个三角形的一组底和高吗?你还能画出其它的底和高吗?学生动手操作,然后评议交流)。

4、拓展在三角形abc中,以ab为底边的高是();以ac为底边的高是();以bc为底边的高是()。

(三)、实验解疑,探索特性。

(2)、得出结论:三角形具有稳定性。

(3)、举例说出生活中应用三角形稳定性。

(四)、巩固运用,提高认识。

课件出示练习十四:1、2、3题。

(五)、总结评价,质疑问难。

1、本节课学习了什么内容?

2、你对三角形有了哪些认识?

三角形的中位线说课稿篇二

全等三角形是八年级上册人教版数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。

本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:

1、知道什么是全等形,全等三角形以及全等三角形对应的元素;

2、能用符号正确地表示两个三角形全等;

3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;

5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

本节课以阅读法、实验法为主,讨论法、情境激学法为辅等教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,在“全等三角形”教学中要以“实验为基础”,增强学生的感性认识突破口。有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。

1、教学生观察、归纳的方法。

为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。

2、通过设疑,启发学生思考。

根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。

学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。

1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。

2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。

本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

三角形的中位线说课稿篇三

《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学平面图形知识的起点,也为学平面几何、立体几何打下基础。

本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。

(二)教学目标。

根据本节课在教材中的地位和作用,依据新课程标准的基本理念和学生的认知水平,我拟定了以下教学目标:

1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。

2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。

3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神。

(三)教学重点、难点。

教学重点:理解三角形的定义,掌握三角形的特征。

教学难点:给三角形确定高和画高。

1、说教法。

本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感受数学之美。

2、说学法。

根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。

这节课的教学过程,我是本着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。

1、生活实际出发,引出课题。

教师拿出三角板,流动红旗,问学生是什么图形,然后让学生说出生活中有哪些三角形。教师说明数学与生活有密切的联系,我们用数学的眼光发现问题。根据学生的年龄特点和心理特征。从生活实际出发,引起学生的兴趣。

这样一来,既打通了数学与生活间的无形屏障,又引发学生强烈的兴奋感和亲切感,营造积极向上的学习氛围,让学生在欢松的心情投入到学习当中。问题的悬念,有利于提高学生的学习热情,使学生产生强烈的求知欲望。

2、合作交流,探索新知。

师:这里主要是回顾学生对三角形原有的认识,起到一个温故而知新的效果。同时,教师及时给予学生鼓励和表扬,这样也可以激发学生、提高学生的学习的积极性。

先让学生自学书本第81页的内容,并画出三角形的各个部分的名称,再请学生小组合作交流,拿出并指着自己的三角板向同伴说出三角形各部分的名称。

请学生自学书本第81页的内容,理解三角形的高和底的定义。并在此基础上调动学生已有的知识经验,先让学生在小组内合作探索尝试画高;然后,教师示范讲解三角形的高的画法;最后出示练习,让学生作出正确的判断。这是在学生已学会了画平行四边形的高的基础上进行教学的。通过自学并调动学生原有的经验去独立思考、去逐步探索,让学生在获取数学知识的过程中体验到成功的喜悦,感受数学的乐趣,增强学生学习数学的信心,并通过练习,使学生对高有一个整体的认识,从而突破这节课的重难点。

利用做游戏来说明:三角形具有稳定性。

这里主要是利用游戏,引起孩子的兴趣,达到寓教于乐的目的。

3、深化训练,拓展延伸。

生活中的三角形。

第二、围篱笆。“哪种方法更牢固,为什么?”

通过这些有序而多样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的能力,有趣的数学在学生们的积极主动的探索中显得更有味道。

本节课的板书比较简洁,突出重点,体现本课时的内在联系,更进一步加深了学生对三角形的特征和特性的认识。

三角形的中位线说课稿篇四

本课时所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历“探索―发现―猜想―证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。

(二)学情分析。

本班学生基础知识比较扎实,接受新知识的意识较强,对于本章有关平行四边形的性质和判定的内容掌握较好,但知识迁移能力较差,数学思想方法运用不够灵活。因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。

三)教学目标。

1、知识目标。

三角形的中位线说课稿篇五

1、教材的地位及作用:教材首先引出中位线的概念,进而探索研究它的性质,最后利用性质定理进行有关的论证和计算,步步衔接,层层深入,形成知识的链条。本课内容可以为今后证明线段平行和线段倍份关系提供重要的方法和依据。可见,三角形中位线在整个知识体系中占有相当重要的作用。另外,本课是通过探究推理得到定理的,所以通过本课教学,对探究数学问题能力的培养及创新思维训练也有着十分重要的作用。

根据新课标要求,结合学生的实际情况,我制定了如下的学习目标:

知识与技能:理解并掌握三角形中位线的概念、性质,会利用性质解决有关问题。

过程与方法:经历探索三角形中位线性质的过程,感受三角形与四边形的联系,培养学生分析问题和解决问题的能力。

情感态度价值观:通过对问题的探索研究,培养学生大胆猜想、合理论证的科学精神。

我认为本课的教学重点是三角形中位线定理及其应用,这是因为:

1、《新课程标准》明确规定要求学生掌握三角形中位线定理,能运用它进行有关的论证;

3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最基本、最重要的定理之一。

教学难点是三角形中位线定理的推证,原因在于补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。

依据本书教学内容及学生知识建构的特点,尚需依赖于直观形象的学习方法,我选用了合作探究式教学法,通过设计活动、问题序列,引导学生动脑、动手、动口、主动探究,参与整个教学过程,体现学生的自主性和合作精神主动愉快地进行创造性学习。

同时,根据图形的特点,充分利用多媒体提高教学效率,增大教学容量,通过动态的演示,激发学生学习兴趣,启迪学生解题思路的蒙发。

“授人以鱼,不如授人以渔”.我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过本节课的学习使学生学会猜想法、测量法、模仿法、自主学习法等。

(一)、创设问题情境,引入新课.

今天这堂课我们就要来探究其中的学问。三角形中位线。

借助多媒体演示引例,创设悬念——如何测算被建筑物隔开的a、b两地的距离吸引学生的注意,激发了学生的兴趣和求知欲。

(二)、引导学生,探究新知:

1、概念教学:

直接认识概念。

老师结合图形演示所做线段区别是三角形的中线和中位线。

明确:三角形中位线定义是什么?一共几条?引导学生自己给三角形中位线下定义,从而培养学生归纳概括的能力。

观察区别:三角形的中位线与三角形的中线有什么区别?又有什么联系?加深学生对三角形的中线和中位线认识,从而培养学生对比学习的能力。

2、自学交流:

引导学生猜想,鼓励学生仔细观察,说出他们自。

己的猜想。使学生在学习过程中学会猜想。

做一做:

方法一(测量法)。

2、量出中位线和第三边的长度;

3、你发现了什么?

教师给学生提供操作步骤,引导学生通过动手测量、推理检验自己猜想的合理性。教师参与学生探究解决问题的'过程中,与学生交流,获取信息,了解学生实际,从而有针对性地引导学生进行证明。

学生说自己的证法(实物投影仪),最后由教师借助幻灯片演示完整的过程。

总结定理:(幻灯片)。

三角形的中位的性质定理:三角形的中位线平行于第三边,并且等于它的一半。

让学生总结定理,(教师强调)一个题设两个结论,(一个是位置关系,一个是数量关系,根据需要选用相应的结论)它提供了一种证明直线平行和线段数量关系的新方法,应用定理的关键是找出(或构造出)符合定理的基本条件,加强学生对定理的理解,培养了学生归纳概括的能力。

3.定理应用:(幻灯片)为了进一步巩固定理,加深对定理用途的认识,我选择教科书上的例题,放手发动学生自主学习。对学生的疑惑教师进行点拨。通过此题学会运用定理进行推理运算,发挥例题的示范,提高学习的效率与学生自学能力。

4.当堂检测。

5、归纳小结。

让学生自己总结并谈收获,培养归纳能力,围绕教学目标,教师补充强调,通过小结,使学生进一步明确学习目标,使知识成为体系。

6、布置作业。

教材68页2题巩固运用定理解决问题。

7、板书:

1.定义:连接三角形两边中点的定理的证明:

三边,并且等于它的一半。

通过板书呈现教学重难点,进一步明确学习目标。

总之,在设计教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究、合作学习,培养学生良好的数学素养和学习习惯,让学生学会学习。

三角形的中位线说课稿篇六

三角形是常见的一种图形,也是最基本的多边形,三角形的认识是进修平面图形知识的起点,是学习研究其他几何图形的基础,在实践中有着广泛的应用。本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,是三角形认识的第二阶段。本节课的教学主要包括三角形的意义、特征、特性、画高等内容。张老师的这节课整个教学过程始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。具体体现在以下几个方面:

1、充分展现概念的生成过程。张老师在教学三角形的意义时,没有直接把“由三条线段围成的图形叫做三角形”这个定义直接地呈现给学生,而是紧紧围绕“三条线段”、“围成”这两个关键词进行教学,使学生认识到三角形必须具备两个条件:一、是否具有三条线段;二、是否围成封闭的图形。接着安排判断练习,从正反两方面,同时还出现用曲线围成的图形。进一步加深对三角形意义的理解。

2、充分运用比较的方法,突出重点。老师在教学中多次用到了比较的方法,(1)、通过比较,揭示三角形的共性。如在教学三角形的特征时,让学生观察这些三角形都有哪些相同的地方?从而得出三角形都有三条边、三个角、三个顶点。(2)、通过比较,揭示三角形的特性。如出示三角形和四边形的学具,让学生拉一拉,有什么不同?使学生深刻体验到四边形易变形,而三角形不易变形。

3、注重数学知识与生活实践的联系。刘老师在教学三角形的特性时分为四个层次,先用媒体出示生活中电线杆、桥等图片,提出问题:“为什么要做成三角形?”以此激发学生的求知欲;然后通过拉三角形、四边形的学具得出三角形具有稳定性;再让学生利用三角形的稳定性来解释生活中用到三角形的道理,加上及时操作,应用三角形的稳定性固定四边形,使学生更深的体会到数学知识来源于生活、应用于生活的道理。

4、注重学生的自主探索。学生所要学习的知识不应当都以定论的形式呈现,而是应当给学生提供进行探索性的学习的机会,作为教师需要的是加以适当的点拨。张老师先出示三角形让学生画高同时还指出三角形有几条高可以画。并展示学生的作品让学生观察交流这些高画得对不对。这样不仅使学生经历了知识的形成过程,而且使学生在获取知识的过程中,学会了与他人的合作与交流,有助于自身素质的提高。

5、注重练习的层次性和趣味性。由最基本的判断、三角形的稳定性,画高、找高、挑战题等。体现了让不同的学生在数学中得到不同的发展这一教学理念。

三角形的中位线说课稿篇七

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

三角形的中位线说课稿篇八

重难点分析。

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的.情况对比有一定的难度.

教法建议。

教学设计示例。

一、教学目标。

1.掌握中位线的概念和三角形中位线定理。

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力。

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力。

5.通过一题多解,培养学生对数学的兴趣。

二、教学设计。

画图测量,猜想讨论,启发引导.

三、重点、难点。

1.教学重点:三角形中位线的概论与三角形中位线性质.

四、课时安排。

1课时。

五、教具学具准备。

投影仪、胶片、常用画图工具。

六、教学步骤。

【复习提问】。

2.说明定理的证明思路.。

4.什么叫三角形中线?(以上复习用投影仪打出)。

【引入新课】。

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.。

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)。

三角形的中位线说课稿篇九

听了郑老师的一节《三角形的分类》感触颇多,真可谓精彩纷呈,让人受益匪浅,整节课充满了轻松活泼的气氛,智慧的火花不时迸发。教学中教师各级引导学生经历教师精心创设的一系列数学活动,感悟数学的无穷魅力。同时学生的数学思维与逻辑推理能力得到充分的发展。充分展示了郑老师轻松幽默的语言风格和高超的驾驭课堂的能力,本课亮点主要有以下几点:

学生的数学学习活动应当是一个生动活泼、主动的和富有个性的动态过程。要使学生积极主动地参与这一过程,教师必须要为学生创设民主、平等、宽松、友好的学习环境,使学生在心理轻松的情况下,形成一个无拘无束的思维空间,产生愉悦的求知欲望,无顾忌地充分发表自己的创意。

学生学习知识是发现、创造的过程,在教学中郑老师既重视学习结果,更重视过程,始终把学生放在学习主体的位置上,巧妙地引导学生主动去探索,自己去发现。在课堂上为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。突出体现了学生对知识的获取和能力的培养。从不同角度去激发学生的学习兴趣。比如采用“取名字、找朋友、猜一猜”等游戏形式帮助学生理解、记忆,让学生的学习兴趣高涨,创设了一个良好的课堂氛围。

数学是思维的体操,而问题则是思维的源泉,更是思维的动力。新课程改革以转变学生的学习方式为突破口,倡导以问题为中心的教学,通过问题解决建构知识的理解。实施以问题为中心的教学,问题的设计非常关键。在本课中主要问题有:你能帮这些三角形起名字吗?在一个三角形中,能不能有两个直角或两个钝角?等边三角形也是等腰三角形吗?等等。以问题为线,以观察、思考、小组合作等为渠道,引导学生在积极思维的过程中深刻理解所学知识。

课堂教学过程是一个动态变化、发展的过程,也是师生、生生之间交流互动的过程。所以在本课中,有良好的预设,同时又有一些随时动态生成的信息。郑老师能够敏捷地捕捉学生在课堂上稍纵即逝的变化,见机而行,加以判断、重组,适时调整教学进程,形成新的教学步骤,使课堂教学更贴切每个学生的实际状态,让每个学生思绪飞扬,兴趣盎然,让课堂在生成中精彩。

文档为doc格式。

三角形的中位线说课稿篇十

“三角形中位线”这一节中非常重要的内容,为今后进一步学习其他相关的几何知识奠定了基础,下面从五个方面来汇报我是如何钻研教材、备课和设计教学过程的。

一、关于教学目标的确定。

根据“三角形中位线”的地位和作用,我确定了如下三维目标:

(1)知识与技能:使学生理解三角形中位线的概念,掌握三角形中位线定理,同时要会用三角形中位线定理进行有关的论证和计算。

(2)过程和方法:培养学生动手动脑、发现问题、解决问题的能力。

(3)情感、态度及价值观:对学生进行实践------认识-------实践的辩证唯物主义认识论教育。

二、关于教材内容的选择和处理。

这节课所选用的教学内容是:教材中的定义、定理,教材中的例题和习题,对定理的推理有所补充,但抽象思维还不够,由于学生学习知识还是以现象描述为主要方式,而且学习的个性差异也比较大。因此,本着因材施教的原则,我一方面对学生进行基本知识和基本技能的训练,另一方面也能对个别程度较好的学生有所侧重,这与教学目标是相一致的。我认为本节课的教学重点是三角形中位线定理及其应用,这是因为:

1、《新课程标准》明确规定要求学生掌握三角形中位线定理能运用它进行有关的论证。

2、三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述:

3、学习定理的目的在于应用,而三角形中位线定理的应用相当广泛,它是几何学最最基本、最重要的定理之一。

教学难点是三角形定理的推证,原因有两点:

1、教材上所有证法实际上是同一法,这种方法学生未接触过。

2、在补充三角形中位线定理的证法中,还利用了数学中的化归思想,这正是学生的薄弱环节。

三、关于教学方法和教学手段的选用。

根据本节课的内容和学生的实际水平,我采用的是引导发现法和直观演示法。引导发现法属于启发式教学,它符合辩证唯物主义中内因和外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导、启发,充分调动学生学习的主动性。另外,在引出三角形中位线定理后,通过投影仪进行教具的直观演示,使学生在获得感性知识的同时,为掌握理性知识创造条件。这样做,可以使学生饶有兴趣地学习,注意力也容易集中,符合教学论中的直观性和可接受性原则。

四、关于学法的指导。

“授人以鱼,不如授人以渔”。我体会到,必须在给学生传授知识的同时,教给他们好的学习方法,就是让他们“会学习”。通过这节课的教学使学生“会设疑”,“会尝试”、“学习有得必先疑”,只有产生疑问,学习才有动力。在教学过程中学生首先要对“所作的平行线与中位线重合吗”,“为什么会重合”,“重合后能得到什么结论”这些问题产生疑问。问题的解决就使得旧知识的缺陷,得以弥补。从而培养学生发现问题、提出问题、解决问题的能力。在提出问题后,要鼓励学生通过分析、探索尝试确定出问题解决的办法。比如在教学中,推证出三角形中位线定理以后,还应再尝试,用其他方法进行证明看是否可行。通过自己的亲自尝试,由错误到正确。由失败到成功,通过尝试,学生的思维能力得到了培养,当然在教学过程中学生还潜移默化地学到了诸如发现法、模仿法等。

五、关于教学程序的设计。

经过三角形一边中点与另一边平行的直线平分第三边,从而引出“三角形的中位线”这个概念同时板书课题,并提出问题、三角形中位线与三角形中线的区别?以激发学生学习新知识的兴趣。紧接着让学生作出三角形的所有中位线(3条),不仅可以让学生更清楚地认识中位线,而且在不知不觉中分化了这节课的难点,并为下面找中位线与第三边的数量关系作好了准备,然后,教师引导学生自己作图:先画abc的一条中位线de,过ab得中点作bc的平行线。因为线段的中点是唯一的,从而可发现这条平行线与中位线重合。这就证明三角形中位线与第三边是平行的,这样做的同时突破了这节课的难点,因为这个平行关系的证明采用的是“同一法”,学生初次见到,自然会产生疑问,“怎么作了平行线还证平行呢?”通过学生自己动手作图,就可以自然地接受了。这时再回头看刚才画出的图,利用平行关系,可得到三角形中位线与第三边的数量关系,这样通过“回忆-----作图------设疑------探索------发现------论证”而让学生掌握了三角形中位线与第三边的数量关系和位置关系,而且对教材中的论证方法有了较深的印象,突破了本节课的难点。

三角形中位线定理证明出来了,那么是否就只有这一种证法呢?引导学生观察中位线与第三边的数量关系,发现它实际上是线段间的倍分问题。在这之前,有关线段间的倍分关系只有在直角三角形中见过。能否把它转化成我们熟知的线段间的相等的问题?通过一个简易的自制教具,借助投影仪来演示,提出“截厂法”和“补短法”这两种添加辅助性的常用方法,通过演示让学生真正体会到这两种方法的精髓所在。

下面再通过一个练习巩固定理的掌握,它是紧紧围绕定理而设置的。通过练习可以看到学生对定理掌握的程度,并要求学生认识三条中位线把三角形化成4个小三角形之间的全等关系,面积关系等。

学生做完练习,把教材中设置的例题投影在屏幕上,指导学生审题,让学生根据题意写出已知、求证,画出图形,再请两位同学尝试着分析证题思路,根据学生的分析进行补充讲解,达到解决问题的目的。证明过程由学生书写,然后,由我进行规范化的板书,以培养学生养成良好的推理习惯。另外,还配备了一道练习题,请一位同学到黑板上来做,做完后,我简单的讲评,并要求学生注意书写格式,通过例题和练习题的配备,使学生将本节所学知识得以具体化,达到应用的目的,这也是本节的重点之一。课堂小组我是通过3个问题的设置,让学生自己理清这节课的知识脉络。

最后布置作业,所布置的作业是紧紧围绕着三角形中位线定理及其应用的,通过作业反馈本节课知识掌握的效果,在课后可以解决学生尚有疑难的地方。在整个教学过程中,我用“先学后导,当堂检测,分布突破,及时反馈”的“四维度”课堂教学模式贯穿全过程,充分体现了“以三维目标为主轴,以学生自学为主体,以教师释疑为主导,以当堂检测为主线”的“四为主”教学思想,取得了良好的教学效果。

三角形的中位线说课稿篇十一

“三角形的特性”一课属于图形概念课,人教版安排在四年级下册第五单元第一课时。本节课要让学生理解三角形的概念、认识三角形各部分的名称、知道三角形的稳定性、会做三角形的高。

1、引入环节,适当的加入情境。

在以往的“模式”运用中,我们习惯于开门见山,直奔课题。但对于学生来说,对知识的渴求或是挑战性的开课,更能引起学生对知识的兴趣。因此,在课始让学生猜一猜我所比划的平面图形(三角形),并尝试自己画出三角形,在猜测中、在挑战中、在简捷的情境中,学生进入了本课的学习。

2、自学指导,尽量多一些活动。

“自学指导”是桥梁,它拉近了学生与新知的距离;“自学指导”是拐杖,它引导着学生不断地发现与探索;“自学指导”更是教学的灵魂,它展现着本课的重点与难点。因此,结合本学段学生年龄的特点和所学知识,我采用“活动”与“结论”同在的方式设计了两次自学,力求让学生在“动”中学,边操作边学习,边尝试边感悟,逐步形成对概念的初浅理解。并利用之后的“填一填”,将形象的活动上升为理性的认识,这样既是对本课重难点的凸现,同时也教给学生一种学习的策略,提升了自学的效果,逐步提高自学的能力。

3、目标的出示,随内容依次呈现。

在“模式”的应用中,我们可以感受到:直接出示目标虽然可以让学生做到心中有数,有针对性的进行学习,但我们可以想象一下,当学生把小黑板上那一长串的甚至是分好几段的文字读完之后,真正存在于学生心中的目标到底有多少?即使是教师一再精减文字,但对于一些目标较多的课来说,这样做仍然起不到真正的作用。那我们是不是可以试着改变一下目标的呈现方式,随着学习内容的深入逐步展现出来,这时,学生对目标更为清晰,对是否达成了目标也更心中有数。

因此,我的目标出示是放在课中的,在学生理解了三角形的概念、各部分名称及特性之后,做为一个阶段的小结才出示的,与此同时,提出了下一阶段的学习目标——三角形的底和高。(俨然一个“承上启下”,不知这样做是否符合“模式”,还请提出宝贵意见。)。

1、整合重组教材,使教学更加趋于自然流畅。

本课的教材编排顺序是:三角形的“概念——各部分名称——底和高——特性”,在设计时,我先让学生在“画中感悟,形成概念”,同时引出各部分的名称;再让学生透过生活,在实验中理解三角形稳定的特性;最后在自学指导中“自主探索,尝试画高”,体验“垂直”和“对应”。

2、以活动贯穿教学的始终,让学生在“做”中学。

本课中设计最多的就是学生的活动,如自学指导中的“画一画”、“标一标”、“试一试”、“填一填”,理解特性时的“拉一拉”,充分调动学生的多种感观,让学生尽可能地参与到学习中来,在动中思考、发现,在动中感悟、体验,在动中理解、概括。经历学习的过程,促进学生有效的学习。

3、层层深入、步步逼进,提炼概括新知。

在“三角形的定义”的教学中,先让学生在画中感悟,然后对通过一组(四个)反例的辨析,对三角形有了更进一步认识,并在此基础上概括“什么样的图形叫做三角形”,重点理解关键词“围成”、“三条线段”,这样教学,让学生从图形语言逐步地过渡到数学语言,在纠错中提炼,在实例中解析,使学生的认识不断地升华。

再如,“三角形底和高”的教学中,先让学生自学尝试画高,由于书中只给出了最基本的锐角三角形的高的画法,而且是最简单的一条高,对于优生来说,他们知道的远不止这些,因此,我在自学指导中有意的加入了直角三角形和钝角三角形,让学生尝试画出不同的高。这样,就满足了不同层次学生的需求。在汇报交流高的画法中,我让学生充分展示不同三角形中所画的不同的高,在不同中寻找相同点,在不同中感受“对应”,在错误中辨析明理,逐步感受三角形底和高的含义。这样教学,使得学生对概念有了更深刻地认识。

总之,我们不能刻板地去套用“模式”,更多时候,“模式”是一种理念的影子,我们所需要的是找到、研读到里面所蕴涵的理念,用它指导我们的教学,让我们的教学更为有效!

三角形的中位线说课稿篇十二

本节是九年制义务教育实验教材小学数学第八册的教学内容,它包括三角形三条边之间的关系以及部分练习。在此之前,学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为学生研究三角形的新的特性——任意两边之和大于第三边做好了知识迁移基础。

学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验,为进一步学习三角形的内角和、面积等内容打下坚实基础。

本课的重点是:三角形三边关系的实验与探究,这个关系不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用。

本节内容的难点是:利用三角形三边之间的关系解决实际问题,在学习和应用这个关系时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”,而学生的错误就在于以偏概全。

新课标的基本理念要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:

1、使学生知道“三角形中任意两边的和大于第三边”,运用关系解决简单的实际问题;

2、培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力。

3、让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生数学运用的意识以及团结协助的精神。

针对平面几何知识教学的特点、以及小学生以形象思维为主、空间观念薄弱的特点,我打算采用创设情境法、实验法、比较法,以及分组讨论、合作学习的形式,并运用多媒体教学课件辅助教学,让学生在观察、感知的基础上,动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。

在学法指导上,我将充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,在设计课程方案时,将学生分成5人学习小组,同组异质:组内成员分工明确(有组长、记录员、操作员、发言员等),让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。

1、实验法初步感知。每组拿出课前准备好的几组小棒(或者用纸条),进行操作实验,并详细做好记录,填写在统计表中。

2、讨论交流法发现规律。

a、两条边的和大于第三条边就能组成三角形;

b、最长的那条边小于另外两条边的和才能组成三角形;

c、任意两边的'和一定要大于第三条边才能组成三角形;

d、较短的两条边的和大于最长的边一定能组成三角形;

e、两边的差小于第三边也能组成三角形;

只要孩子们能大胆发表自己的见解,不管正确与否,教师都给予鼓励,并集中对以上的几个结论进行点评,对学生的b、c、d、e的回答予以肯定,对a的回答组织学生讨论,分析错误的原因。

3、画图法验证结论学生小组为单位进行第二层次实验:小组内画出3个任意的三角形,用尺去量出三条边的长短,填入表格。

4、应用规律解释“最近”。“为什么小明上学走中间这条路最近呢?”

5、根据本节课的教学目标,我设计了三个层次的练习:

a、基本练习:下列长度的三条线段能否组成三角形?为什么?

(1)8、9、15;(2)9、6、15;(3)9、6、14。单位:(厘米)。

使学生对初步感知的结论有更加深刻的认识。只有让理论与实践相结合,才能学活知识,使知识起到质的飞跃。

c、课堂延伸:画出一个三角形,让学生量出三个角的度数,再让学生量出三条边的长度,试着让学生寻找最长边与最大角、最短边与最小角的关系。

目的是为了体现因材施教的原则,在面对全体的情况下,促进学有余力学生的思维发展。

三角形的中位线说课稿篇十三

我说课的内容是三角形的面积。三角形面积的计算是义务教育课程实验教材第九册第六单元“多边形面积的计算”中的第二节。这部分内容是在学生掌握了三角形的特征,以及长方形、平行四边形面积计算的基础上教学的。教材的编排加强了学生的动手操作,如求三角形的面积,让学生用两个完全一样的三角形拼摆已学过的图形。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索研究的图形与已学过的图形之间有什么联系,从而找出面积的计算方法,而不是直接把公式告诉学生。这样既使学生在理解的基础上掌握了三角形面积计算公式,又培养了学生的思维能力和动手操作能力。教材中的插图给出了转化的操作过程,同时渗透了旋转和平移的思想,以便于学生理解公式的来源。

基于以上认识,按照新课程理念,我确定了以下教学目标:

1、认知目标。

探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、能力目标。

使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、情感目标。

在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。

根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:

1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。

2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。

本节课在学习方法上我侧重以下几点:

1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。

2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。

3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。

针对上述内容的需要,我设计了如下的教学程序:

一、激情导课。

1、师:同学们,我们来玩一个游戏好吗?(好)。请大家拿出信封内的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。

2、小组学生代表上台汇报操作结果。

3、师根据汇报有选择地在黑板上贴出以下四种折法:

4、让学生观察后提问。

师:这三个图形分别折成了两个形状、大小完全一样的什么图形?

生:这三个图形分别折成了两个形状,大小完全一样的三角形。

从而引导学生可以先求长方形面积,再算它的一半就可以。

那么如果有一块花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)。

二、自主探索,合作交流。

1、拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:

(课件出示以下问题)。

a、两个完全一样的三角形能拼出什么图形?

c、拼成的图形与原来每一个三角形有什么联系?

(学生在小组里动手拼一拼,并相互交流以上问题)。

2、操作探索。

(1)小组合作探索、操作。

(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)。

3、展示交流。

师:同学们,方法找到了吗?哪个小组上来汇报?

三、检测导结。

解决实际问题,并进行课堂小结。

通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。

三角形的中位线说课稿篇十四

三角形小学数学高年级的内容之一。在本课之前,学生已经学习过一些相关的知识点,如线段、角、也能简单区分三角形和其他形状的区别,三角形的认识是平面图形知识的起点,是学习研究其他几何图形的基础,在实践中有着广泛的应用。本节课的教学主要包括三角形的定义、画高等内容。周老师的这节课整个教学过程始终围绕教学目标展开,层次比较清楚,环节紧凑,并注意引导学生通过观察、分析、动手实践、自主探索、合作交流等活动,突出体现了学生对知识的获取和能力的培养。具体体现在以下几个方面:

关注学生学习研究过程。周老师在教学三角形的意义时,没有直接把“由三条线段围成的图形叫做三角形”这个定义直接地呈现给学生,而是紧紧围绕三条线段”、“围成”这两个关键词进行教学,通过比较、判断等等手段使学生认识到三角形必须具备两个条件:

一、是否具有三条线段;

二、是否围成封闭的图形。接着安排判断练习,从正反两方面,同时还出现用曲线围成的图形、用不封闭的线围成的图形等。进一步加深对三角形意义的理解。

注重设计的趣味性。在最初的定义学习之后,我们进入到本课的难点,画高。教师通过让学生自己来找高,以及自己动手画画高,到最后优生的演示,无一不是体现学生在课堂上的自主地位。虽然画高到最后的钝角的高,这个过程出来的比较曲折,但我相信真正思考该问题的学生对三角形的学习是非常深刻。这也符合我们新课程的教学理念:以学生为主体,充分发挥学生的探究精神。

不过,我认为本课还是有值得改进的地方。比如,在画高的过程中,教师所呈现在黑板上的三角形不够大,导致三条高密密麻麻地堆在一起,影响学生更为直观地进行理解。同时,板书的排版还需要更为简洁、合理。

当然,作为一名非专职的数学老师去听课,我的观点可能还是比较肤浅或不够正确,但周老师的教态自然、大方,教学设计紧凑等方面仍是值得我们学习的。

三角形的中位线说课稿篇十五

今天我说课的内容是第9册的“三角形面积的计算”。

在学这课之前,学生已有的知识基础有:长方形、正方形、平行四边形的面积计算;一些简单多边形的特征等。学习方法方面的基础有:在学习习近平行四边形面积计算的时候,学生已经初步感受了可以用剪拼、平移、旋转等操作活动,使图形等积变形。事实上,在学这课之前,部分学生对三角形面积计算的公式并不是一无所知,但那只是一种机械记忆,知道公式,说不清所以来。

教学目标:

1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。

2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

教学重点:

将本文的word文档下载到电脑,方便收藏和打印。

三角形的中位线说课稿篇十六

说课的内容是三角形的面积。三角形面积的计算是义务教育课程实验教材第九册第五单元多边形面积的计算中的第二节。这部分内容是在学生掌握了三角形的特征,以及长方形、平行四边形面积计算的基础上教学的。教材的编排加强了学生的动手操作,如求三角形的面积,让学生用两个完全一样的三角形拼摆已学过的图形。一方面启发学生设法把研究的图形转化为已经会计算面积的图形,另一方面主动探索研究的图形与已学过的图形之间有什么联系,从而找出面积的计算方法,而不是直接把公式告诉学生。这样既使学生在理解的基础上掌握了三角形面积计算公式,又培养了学生的思维能力和动手操作能力。教材中的插图给出了转化的操作过程,同时渗透了旋转和平移的思想,以便于学生理解公式的来源。

基于以上认识,按照新课程理念,我确定了以下教学目标:

1、认知目标。

经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。

2、能力目标。

通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。

3、情感目标。

在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。

根据以上的教学目标、教学重、难点,我准备采用以下教学方法进行教学:

1、发展迁移原则。运用迁移规律,引导学生在整理旧知的基础上学习新知。

2、加强学生动手操作。在学生拼摆实验的基础上,通过课件演示,采取旋转、平移的方法,将两个完全一样的三角形拼成平行四边形,加深学生对三角形面积公式来源的体验和理解。

本节课在学习方法上我侧重以下几点:

1、学会以旧引新,掌握运用知识迁移、学法迁移进行学习的方法。

2、操作实验法。学生自己动手用两个完全相同的三角形拼摆出自己学过的图形,弄清三角形面积与平行四边形面积的关系。

3、学习讨论法。在操作实验的基础上,讨论三角形的底和高与拼成的平行四边形的底和高的关系,从而总结出三角形面积的计算公式。

针对上述内容的需要,我设计了如下的教学程序:

师:在讲课之前,首先,谁愿意给大家说一说,你有什么爱好?

生:我喜欢。

(引导学生可以先求长方形面积,再算它的一半就可以)。

那么如果遇到花坛形状是这样普通的三角形,面积怎么计算呢?我们今天一起来研究,大家有兴趣吗?(教师板书课题:三角形面积的计算)。

1、引导学生看大屏幕(出示不同类型的三角形),提出思考:谁来说说你看到了什么?

3、谈话启思。

请大家运用老师提供的素材,自行确定研究方案,希望同学们发挥自己的想象,可以拼,还可以摆。小组里的同学可以互相合作、讨论,看哪一些小组能找到三角形面积的计算方法。

4、操作探索。

(1)小组合作探索、操作。

(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)。

5、开始现场发布会,展示学生的拼摆情况。

师:同学们,方法找到了吗?哪个小组上来汇报?

师:,说得非常好!我们一起来看看电脑博士是怎么说的?(课件演示整个重合旋转平移的过程,并说出推导过程)。关于其他的三角形,哪个小组还有新的发现?好,你们小组来。

生:我们用的是两个完全一样的钝角三角形,也可以拼成一个平行四边形,

推导过程跟上一组一样,我们的结论是钝角三角形的面积=底高2。

师:好的,我们来看一下电脑里有没有这种方法?(课件演示)你们的方。

法也很好。

生:我们小组是用两个完全一样的直角三角形也可以拼成一个平行四边。

生:我们小组用的同样是直角三角形,但我们拼成的是一个长方形。这个。

师:好,同学们你们真了不起!找到了这么多的方法。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形可以拼成一个平行四边形。

板书:平行四边形的面积=底高。

如果用字母s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?(板书:s=ah2)。

1、估算红领巾的长是多少,高是多少,计算红领巾的面积。(确定底是100厘米,高是33厘米学生自主练习,最后小结课件出示结果)。

(课件出示标志牌图,在学生算出面积之后,引导思考:为什么不用3乘以2.5来算它的面积)。

引导小结:在求三角形面积时,底与高是一一对应的关系,对应的底乘以对应的高再除以二才是三角形的面积。

认识交通警示标志牌,引导计算制作两块标志牌所用的铁皮?

(课件出示题目)。

3、评价体验。

师:你们通过自己的努力找到了三角形面积的计算方法,老师也为你们。

生:愿意!

下图中哪个三角形的面积与画阴影三角形的面积相等?为什么?

你能在图中再画一个与画阴影的三角形面积相等的三角形吗?试试看?

师:通过这节课的探索学习,你有什么收获?

生:我们知道了三角形的面积计算方法,还会用它来进行计算。

生:这节课我们通过自己动手动脑得出来了三角形的面积公式,我真是太高兴了!

您可能关注的文档