函数的概念教案(优秀13篇)

  • 上传日期:2023-11-13 00:42:04 |
  • ZTFB |
  • 14页

设计教案时,需要注重教学内容的层次性和逻辑性,确保学生能够逐步发展和提升。教案的编写需要根据学生的认知水平和心理特点,选择合适的教学策略。请大家浏览下面这些精选的教案范文,希望对大家的教学设计有所帮助。

函数的概念教案篇一

1、x理解的定义,初步掌握的图象,性质及其简单应用。

2、x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3、x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

函数的概念教案篇二

让学生自己由和角公式而导出倍角公式和半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识.

3.情感态度价值观。

通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力.

函数的概念教案篇三

(1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

函数的概念教案篇四

对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

函数的概念教案篇五

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。

1、6、(板书)。

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

由学生回答:x与x之间的关系式,可以表示为x。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为x米,试写出x与x之间的函数关系。

由学生回答:x。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为。

1、定义:形如x的函数称为。(板书)。

教师在给出定义之后再对定义作几点说明。

2、几点说明x(板书)。

(1)x关于对x的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若x会有什么问题?如x,此时x,x等在实数范围内相应的函数值不存在。

若x对于x都无意义,若x则x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定x且x。

(2)关于的定义域x(板书)。

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,x也是一个确定的实数,对于无理指数幂,学过的有理指数幂的"性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为x。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)。

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(4)x,x。

(5)x。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)x可以写成x,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3、归纳性质。

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数。

1、定义域x:

2、值域:

3、奇偶性x:既不是奇函数也不是偶函数。

4、截距:在x轴上没有,在x轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于x轴上方,且与x轴不相交。)。

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线。

二、图象与性质(板书)。

1、图象的画法:性质指导下的列表描点法。

2、草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且x,取值可分为两段)让学生明白需再画第二个,不妨取x为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即x=x与x图象之间关于x轴对称,而此时x的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到x的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如x的图象一起比较,再找共性)。

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个x的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3、性质。

(1)无论x为何值,x都有定义域为x,值域为x,都过点x。

(2)x时,x在定义域内为增函数,x时,x为减函数。

(3)x时,x,xx时,x。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三、简单应用x(板书)。

1、利用单调性比大小。x(板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1、x比较下列各组数的大小。

(1)x与x;x(2)x与x;。

(3)x与1x。(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解:x在x上是增函数,且x。(板书)。

教师最后再强调过程必须写清三句话:

(1)x构造函数并指明函数的单调区间及相应的单调性。

(2)x自变量的大小比较。

(3)x函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小。

(1)x与x;x(2)x与x;。

(3)x与x。(板书)。

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说x可以写成x,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说x可以写成x,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。

最后由学生说出x1,1。

解决后由教师小结比较大小的方法。

(1)x构造函数的方法:x数的特征是同底不同指(包括可转化为同底的)。

(2)x搭桥比较法:x用特殊的数1或0。

四、巩固练习。

练习:比较下列各组数的大小(板书)。

(1)x与xx(2)x与x;。

(3)x与x;x(4)x与x。解答过程略。

五、小结。

2、的图象和性质。

3、简单应用。

六、板书设计。

函数的概念教案篇六

1.公式的特点要嘱记:尤其是“倍角”的意义是相对的,如:是的倍角.

2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次).

3.特别注意公式的三角表达形式,且要善于变形:

这两个形式今后常用.

4.半角公式左边是平方形式,只要知道角终边所在象限,就可以开平方;公式的“本质”是用角的余弦表示角的正弦、余弦、正切.

5.注意公式的结构,尤其是符号.

函数的概念教案篇七

(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。

(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.

函数的概念教案篇八

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.

二、探究归纳。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.

解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

上述图象,通常称为双曲线(hyperbola).

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

学生讨论、交流以下问题,并将讨论、交流的结果回答问题.

1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

2.反比例函数(k0)的图象在哪两个象限内?由什么确定?

反比例函数有下列性质:

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

注1.双曲线的两个分支与x轴和y轴没有交点;。

2.双曲线的两个分支关于原点成中心对称.

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.

三、实践应用。

例1若反比例函数的图象在第二、四象限,求m的值.

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.

解由题意,得解得.

例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.

分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.

解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.

例3已知反比例函数的图象过点(1,-2).

(1)求这个函数的解析式,并画出图象;。

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.

解(1)设:反比例函数的解析式为:(k0).

而反比例函数的图象过点(1,-2),即当x=1时,y=-2.

所以,k=-2.

即反比例函数的解析式为:.

(2)点a(-5,m)在反比例函数图象上,所以,

点a的坐标为.

点a关于x轴的对称点不在这个图象上;。

点a关于y轴的对称点不在这个图象上;。

点a关于原点的对称点在这个图象上;。

例4已知函数为反比例函数.

(1)求m的值;。

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3时,求此函数的最大值和最小值.

解(1)由反比例函数的定义可知:解得,m=-2.

(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;。

当x=-3时,y最小值=.

所以当-3时,此函数的最大值为8,最小值为.

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

(1)写出用高表示长的函数关系式;。

(2)写出自变量x的取值范围;。

解(1)因为100=5xy,所以.

(2)x0.

(3)图象如下:

说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

四、交流反思。

本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

1.反比例函数的图象是双曲线(hyperbola).

2.反比例函数有如下性质:

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

五、检测反馈。

1.在同一直角坐标系中画出下列函数的图象:

(1);(2).

2.已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;。

(2)当时,y的值;。

(3)当x取何值时,?

3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

4.已知反比例函数经过点a(2,-m)和b(n,2n),求:

(1)m和n的值;。

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.

函数的概念教案篇九

2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题。

备用实例:

我国xxxx年4月份非典疫情统计:

日期222324252627282930

新增确诊病例数1061058910311312698152101。

3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.。

函数的概念教案篇十

理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

一、问题。

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习。

1、给出下列命题:

(1)小于的角是锐角;

(2)若是第一象限的角,则必为第一象限的角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

2、设p点是角终边上一点,且满足则的值是。

3、一个扇形弧aob的面积是1,它的周长为4,则该扇形的中心角=弦ab长=。

4、若则角的终边在象限。

5、在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是。

6、若是第三象限的角,则-,的终边落在何处?

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在om位置,终边在on位置的所有角的集合。

例2.(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点a,求的值。

例3.若,则在第象限。

1、若锐角的终边上一点的坐标为,则角的弧度数为。

2、若,又是第二,第三象限角,则的取值范围是。

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是。

4、已知点p在第三象限,则角终边在第象限。

5、设角的终边过点p,则的值为。

6、已知角的终边上一点p且,求和的值。

函数的概念教案篇十一

(1)——定义、图象、性质目标:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

重点:对数函数的定义、图象、性质。

难点:对数函数与指数函数间的关系。

过程:

二、新课。

1.对数函数的定义:函数叫做对数函数;它是指数函数的反函数。对数函数的定义域为,值域为。

2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。

函数的概念教案篇十二

2、利用反比例函数的图象解决有关问题。

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

一、创设情境。

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质。

二、探究归纳。

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.

解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k0)的图象在哪两个象限内?由什么确定?

反比例函数有下列性质:

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

注1.双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用。

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。

解由题意,得解得。

例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限。

分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方。

解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限。

例3已知反比例函数的图象过点(1,-2)。

(1)求这个函数的解析式,并画出图象;

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k0)。

而反比例函数的图象过点(1,-2),即当x=1时,y=-2.

所以,k=-2.

即反比例函数的解析式为:。

(2)点a(-5,m)在反比例函数图象上,所以,

点a的坐标为。

点a关于x轴的对称点不在这个图象上;

点a关于y轴的对称点不在这个图象上;

点a关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当-3时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=-2.

(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=-3时,y最小值=。

所以当-3时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x0.

(3)图象如下:

说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思。

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

五、检测反馈。

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点a(2,-m)和b(n,2n),求:

(1)m和n的值;

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小。

函数的概念教案篇十三

1、使学生掌握的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

(3)x能利用的性质比较某些幂形数的大小,会利用的图象画出形如x的图象。

2、x通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

3、通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

(1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是x的样子,不能有一点差异,诸如x,x等都不是。

(2)对底数x的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

1、x理解的定义,初步掌握的图象,性质及其简单应用。

2、x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3、x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

重点是理解的定义,把握图象和性质。

难点是认识底数对函数值影响的认识。

投影仪。

启发讨论研究式。

一、x引入新课。

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的.常见函数。

1、6、(板书)。

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

由学生回答:x与x之间的关系式,可以表示为x。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为x米,试写出x与x之间的函数关系。

由学生回答:x。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为。

x的概念(板书)。

1、定义:形如x的函数称为。(板书)。

教师在给出定义之后再对定义作几点说明。

2、几点说明x(板书)。

(1)x关于对x的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若x会有什么问题?如x,此时x,x等在实数范围内相应的函数值不存在。

若x对于x都无意义,若x则x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定x且x。

(2)关于的定义域x(板书)。

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,x也是一个确定的实数,对于无理指数幂,学过的有理指数幂的"性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为x。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)。

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(4)x,x。

(5)x。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)x可以写成x,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3、归纳性质。

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数。

1、定义域x:

2、值域:

3、奇偶性x:既不是奇函数也不是偶函数。

4、截距:在x轴上没有,在x轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于x轴上方,且与x轴不相交。)。

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线。

二、图象与性质(板书)。

1、图象的画法:性质指导下的列表描点法。

2、草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且x,取值可分为两段)让学生明白需再画第二个,不妨取x为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即x=x与x图象之间关于x轴对称,而此时x的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到x的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如x的图象一起比较,再找共性)。

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个x的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3、性质。

(1)无论x为何值,x都有定义域为x,值域为x,都过点x。

(2)x时,x在定义域内为增函数,x时,x为减函数。

(3)x时,x,xx时,x。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三、简单应用x(板书)。

1、利用单调性比大小。x(板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1、x比较下列各组数的大小。

(1)x与x;x(2)x与x;。

(3)x与1x。(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解:x在x上是增函数,且x。(板书)。

教师最后再强调过程必须写清三句话:

(1)x构造函数并指明函数的单调区间及相应的单调性。

(2)x自变量的大小比较。

(3)x函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小。

(1)x与x;x(2)x与x;。

(3)x与x。(板书)。

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说x可以写成x,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说x可以写成x,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)。

最后由学生说出x1,1。

解决后由教师小结比较大小的方法。

(1)x构造函数的方法:x数的特征是同底不同指(包括可转化为同底的)。

(2)x搭桥比较法:x用特殊的数1或0。

四、巩固练习。

练习:比较下列各组数的大小(板书)。

(1)x与xx(2)x与x;。

(3)x与x;x(4)x与x。解答过程略。

五、小结。

1、的概念。

2、的图象和性质。

3、简单应用。

六、板书设计。

您可能关注的文档