最新数学知识点总结合集(实用9篇)
- 上传日期:2023-11-11 22:30:59 |
- ZTFB |
- 7页
总结可以帮助我们发现问题和不足,为下一步的学习和工作提供指导和改进方向。想要写一篇较为完美的总结,首先我们需要提前准备好相关的材料和数据。接下来,小编为大家分享一些写得不错的总结范文,希望能够给大家一些启示和借鉴。
数学知识点总结合集篇一
1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式
单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算
1. 同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
4. 幂的运算:
5. 整式的乘法:
1) 单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2) 单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的`积相加。
3) 多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6. 整式的除法
1) 单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2) 多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式
1) 提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。 取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2) 公式法:a.平方差公式; b.完全平方公式
数学知识点总结合集篇二
初中数学教学,注重培养学生正确的数学情操和几何思维能力。初中怎样学好数学?下面给大家介绍初中数学知识点总结归纳,赶紧来看看吧!
有理数的加法运算。
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算。
减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
合并同类项。
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则。
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程。
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式。
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式。
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式。
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程。
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程。
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法。
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解。
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)。
因式分解。
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解。
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例。
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例。
外项积等内项积,列出方程并解之。
求比值。
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例。
商定变量成正比,积定变量成反比。
正比例与反比例。
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例。
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例。
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项。
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式。
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域。
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式。
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组。
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)。
敬老院以老为荣,(同大就要取较大)。
军营里没老没少。(大小小大就是它)。
大大小小解集空。(小小大大哪有哇)。
解一元二次不等式。
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解。
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解。
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程。
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程。
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程。
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势。
【注】恒等式。
解一元二次方程。
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别。
判断正比例函数,检验当分两步走。
一量表示另一量,有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量,是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质。
正比函数图直线,经过和原点。
k正一三负二四,变化趋势记心间。
k正左低右边高,同大同小向爬山。
k负左高右边低,一大另小下山峦。
一次函数。
一次函数图直线,经过点。
k正左低右边高,越走越高向爬山。
k负左高右边低,越来越低很明显。
k称斜率b截距,截距为零变正函。
反比例函数。
反比函数双曲线,经过点。
k正一三负二四,两轴是它渐近线。
k正左高右边低,一三象限滑下山。
k负左低右边高,二四象限如爬山。
二次函数。
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
a定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
a定开口及大小,开口向上是正数。
绝对值大开口小,开口向下a负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线。
直线、射线与线段。
直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。
射线仅有一端点,反向延长成直线。
线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
角
一点出发两射线,组成图形叫做角。
共线反向是平角,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
直平之间是钝角,平周之间叫优角。
互余两角和直角,和是平角互补角。
一点出发两射线,组成图形叫做角。
平角反向且共线,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
钝角界于直平间,平周之间叫优角。
和为直角叫互余,互为补角和平角。
证等积或比例线段。
等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。
共点共线线相交,平行截比把题证。
三点定型十分像,想法来把相似证。
图形明显不相似,等线段比替换证。
换后结论能成立,原来命题即得证。
实在不行用面积,射影角分线也成。
只要学习肯登攀,手脑并用无不胜。
解无理方程。
一无一有各一边,两无也要放两边。
乘方根号无踪迹,方程可解无负担。
两无一有相对难,两次乘方也好办。
特殊情况去换元,得解验根是必然。
解分式方程。
先约后乘公分母,整式方程转化出。
特殊情况可换元,去掉分母是出路。
求得解后要验根,原留增舍别含糊。
列方程解应用题。
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
添加辅助线。
学习几何体会深,成败也许一线牵。
分散条件要集中,常要添加辅助线。
畏惧心理不要有,其次要把观念变。
熟能生巧有规律,真知灼见靠实践。
图中已知有中线,倍长中线把线连。
旋转构造全等形,等线段角可代换。
多条中线连中点,便可得到中位线。
倘若知角平分线,既可两边作垂线。
也可沿线去翻折,全等图形立呈现。
角分线若加垂线,等腰三角形可见。
角分线加平行线,等线段角位置变。
已知线段中垂线,连接两端等线段。
辅助线必画虚线,便与原图联系看。
两点间距离公式。
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
矩形的判定。
任意一个四边形,三个直角成矩形;。
对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;。
两对角线若相等,理所当然为矩形。
菱形的判定。
任意一个四边形,四边相等成菱形;。
四边形的对角线,垂直互分是菱形。
已知平行四边形,邻边相等叫菱形;。
两对角线若垂直,顺理成章为菱形。
概念课。
要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。
习题课。
要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。
复习课。
在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。
数学知识点总结合集篇三
1、买文具---(小面额的人民币)。
2、买衣服---(大面额的人民币)。
3、小小商店---(进行有关钱款的简单计算)。
买文具(小面额的人民币)。
1、认识各种小面额的人民币。
2、体会小面额人民币之间的换算关系。
3、从实际问题中理解“付出的钱、应付的钱、应找回的钱”三者之间的关系。
4、在购物情景中进行有关钱款的简单计算。
买衣服(大面额的人民币)。
1、让学生在活动中认识大面额的人民币,能从相同点和不同点上辨认。
2、会计算大面额人民币之间的换算。
3、在购物活动中体会大面额人民币的作用,运用人民币的兑换知识,初步掌握付钱的方法。
小小商店(进行有关钱款的简单计算)。
1.在购物情景中会进行有关钱款的简单计算。
2.通过购物中的活动,了解付费的方式是多样化的。
3.通过购物的活动,巩固复习100以内的加减法计算。
4.购物中能解决一些简单的实际问题。
数学知识点总结合集篇四
三忌“好高骛远,忽视双基”
很多同学都知道好高务远就是眼高手低、不自量力的代名词,但却不知道什么是好高骛远。
有的同学由于自己觉得成绩很好,所以,总认为基础的东西,太简单,研究双基是浪费时间;有的同学对自己的定位较高,认为自己研究的应该是那些高于其它同学的,别人觉得有困难的东西;有的同学总是嫌老师讲得太简单或者太慢,甚至有的同学成绩不怎么样,也瞧不起基础的东西。其实,这些都是好高骛远。
最深刻的道理,往往存在于最简单的事实之中。一切高楼大厦都是平地而起的,一切高深的理论,都是由基础理论总结出来的。同学们可以仔细地分析老师讲的课,无论是多难的题目,最后总是深入浅出,归结到课本上的知识点,无论是多简单的题目,总能指出其中所蕴藏的科学道理,而大多数同学,只听到老师讲的是题目,常常认为此题已懂,不需要再听,而忽略了老师阐述“来自基础,回归基础”的道理的关键地方。所以大家一定要重视双基,千万别好高务远。
四忌“敷衍了事,得过且过”
以下是对某校届高三300名同学关于作业问题的两项调查:(数值为人数比例:做到的/总人数)。
你做作业是为了什么?
检测自己究竟学会了没有占91/30.33%。
因为老师要检查占143/47.67%。
怕被家长、老师批评的占38/12.67%。
说不清什么原因占28/9.33%。
你的作业是怎样完成的?
复习,再联系课上内容独立完成占55/18.33%。
数学知识点总结合集篇五
1、重心的定义:平面图形中,几何图形的重心是当支撑或悬挂时图形能在水平面处于平衡状态,此时的支撑点或者悬挂点叫做平衡点,也叫做重心。
2、几种几何图形的重心:
(1)线段的重心就是线段的中点;
(2)平行四边形及特殊平行四边形的重心是它的两条对角线的交点;
(3)三角形的三条中线交于一点,这一点就是三角形的重心;
(4)任意多边形都有重心,以多边形的任意两个顶点作为悬挂点,把多边形悬挂时,过这两点铅垂线的交点就是这个多边形的重心。
提示:
(1)无论几何图形的形状如何,重心都有且只有一个;
(2)从物理学角度看,几何图形在悬挂或支撑时,位于重心两边的力矩相同。
3、常见图形重心的性质:
(1)线段的重心把线段分为两等份;
(2)平行四边形的重心把对角线分为两等份;
(3)三角形的重心把中线分为1:2两部分(重心到顶点距离占2份,重心到对边中点距离占1份)。
上面对重心知识点的巩固学习,同学们都能熟练的掌握了吧,希望同学们很好的复习学习数学知识。
数学知识点总结合集篇六
1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的知识。
2、记笔记:指的是课堂笔记,每节课时间有限,老师一般讲的都是精华部分。
3、课后复习:通预习一样,也是行之有效的方法。
4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。
5、学会归类总结:学习数学记得东西很多,如果单纯的记忆每个公式,不但增加记忆量而且容易忘。
6、建立纠错本:把经常出错的.题目集中在一起。
7、写考试总结:考试总结可以帮助找出学习之中不足之处,以及知识的薄弱环节。
8、培养学习兴趣:兴趣是最好的老师,只有有了兴趣才会自主自发的进行学习,学习效率才会提高。
数学知识点总结合集篇七
主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
数列这个板块,重点考两个方面:一个通项;一个是求和。
在里面重点考察两个方面:一个是证明;一个是计算。
概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
数学知识点总结合集篇八
3、一个数与0相加,仍得这个数。
有理数加法的运算律
1、加法的交换律:a+b=b+a;
2、加法的结合律:(a+b)+c=a+(b+c)
有理数减法法则
减去一个数,等于加上这个数的相反数;即a—b=a+(—b)
有理数乘法法则
1、两数相乘,同号为正,异号为负,并把绝对值相乘;
2、任何数同零相乘都得零;
3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
数学知识点总结合集篇九
0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;
相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
最小的正整数是1,最大的负整数是-1。
两个正数比较:绝对值大的那个数大;
两个负数比较:先算出它们的绝对值,绝对值大的反而小。
(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.
(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.
(3)一个数同零相加,仍得这个数.
加法的交换律:a+b=b+a
加法的结合律:(a+b)+c=a+(b+c)
减去一个数,等于加上这个数的相反数。
例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”
两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号 第二步:绝对值相乘
当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。
乘积为1的两个数互为倒数,0没有倒数。
正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)
倒数是本身的只有1和-1。
相关文档
您可能关注的文档
- 推荐学习检讨书汇总(通用18篇)
- 劳动合同书范本(优秀11篇)
- 国有资产分析报告 国有企业分析报告(7篇)
- 最新学校班级事迹材料(模板8篇)
- 初中英语日记(通用15篇)
- 2023年人力资源工作总结简短(模板14篇)
- 最新经典好听的英文句子通用(实用10篇)
- 最新企业管理制度范本(通用9篇)
- 2023年面对人生简短(精选10篇)
- 2023年母爱的感人小故事(汇总18篇)
- 学生会秘书处的职责和工作总结(专业17篇)
- 教育工作者分享故事的感悟(热门18篇)
- 学生在大学学生会秘书处的工作总结大全(15篇)
- 行政助理的自我介绍(专业19篇)
- 职业顾问的职业发展心得(精选19篇)
- 法治兴则民族兴的实用心得体会(通用15篇)
- 教师在社区团委的工作总结(模板19篇)
- 教育工作者的社区团委工作总结(优质22篇)
- 体育教练军训心得体会(优秀19篇)
- 学生军训心得体会范文(21篇)
- 青年军训第二天心得(实用18篇)
- 警察慰问春节虎年家属的慰问信(优秀18篇)
- 家属慰问春节虎年的慰问信(实用20篇)
- 公务员慰问春节虎年家属的慰问信(优质21篇)
- 植物生物学课程心得体会(专业20篇)
- 政府官员参与新冠肺炎疫情防控工作方案的重要性(汇总23篇)
- 大学生创业计划竞赛范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 编辑教学秘书的工作总结(汇总17篇)
- 学校行政人员行政工作职责大全(18篇)