分数乘法培训心得体会和感想 分数乘法的体会和收获(二篇)
文件格式:DOCX
时间:2022-12-21 14:04:14    小编:ZTFB
分数乘法培训和感想 分数乘法和收获 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

分数乘法培训心得体会和感想 分数乘法的体会和收获(二篇)

  • 上传日期:2022-12-21 14:04:14 |
  • ZTFB |
  • 12页

学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

有关分数乘法培训心得体会和感想一

在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:

一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

二、以1/5xx1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。

三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。

通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

有关分数乘法培训心得体会和感想二

本节课在教学中充分借助学生已有的知识基础,通过观察、涂画、比较、归纳等活动,通过例题的直观操作,通过知识的迁移帮助学生理解了分数乘分数的意义,初步掌握了分数乘分数的计算方法。在教学中我注重了以下几点;

一、创设情境、直观导入

在教学中为了突破教学的难点,使学生能够真正理解分数乘法计算法则的算理,一开始我就请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?,通过对长方形纸的涂色,很好的揭示这一道理。将抽象的算理与直观的示意图结合起来,使抽象思维和形象思维结合起来。在解决算理时,通过数与形之间的对应和转化,从而启发计算思维。比如画斜线的1份占1/2的1/4,此时的单位"1"是1/2,但是对于整个长方形来说是1/8,此时的单位“1”是一个长方形。

二、关注算理的推导

“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。

新知教学时我出示“1/2×1/3”猜一猜这个算式表示什么意义?我提示学生想一想分数与整数的意义 看一看适合分数与分数相乘吗?最后学生得出,“1/2×1/3”表示二分之一的三分之一是多少。这时,我告诉学生这道算式也可以表示三分之一的二分之一是多少。 我想肯定有同学能够很好掌握,可是肯定也会有一部分学生不能理解,于是我接着要求学生用画图的形式表示出这个算式的意义。这样既可以帮助学生自主地理解分数与分数相乘的意义也加深学生对“分数与分数相乘” 计算法则的理解。

当学生画出这个算式所表示的意义时,我问学生,从图中你能看出“1/2×1/3”的结果吗?学生一下子就说了结果1/6,然后我又出了几个分数与分数相乘的算式要求学生先画图再说出得数这样经过几次动手操作,学生对分数乘法的计算有了深刻的理解。

三、注重学法的渗透

本课时从教学的整体设计上是由“特殊”去引发学生的猜想,再来举例验证、然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。首先让学生通过活动概括得出“分数乘分数”只要“分子不变,分母相乘”或 “分子相乘,分母相乘”的计算方法,再由学生自己用画图、折纸、分数的意义等方法来验证这种计算方法,发现了“分数乘分数,分子不变,分母相乘”的特殊性,以及“分数乘分数,分子相乘,分母相乘”的普遍性。这其间渗透了科学的学习方法和实事求是的科学精神。

这样在计算教学中关注学生的自主探究,让学生自己去做、去悟、去经历、去体验,去创造,既培养了学生合作意识,提高学习的自主性,又使学生在理解掌握方法的同时提高解决问题的能力,形成良好的数学情感与价值观。

您可能关注的文档