2023年三角函数说课稿(大全9篇)

  • 上传日期:2023-11-25 00:50:57 |
  • zdfb |
  • 7页

总结可以使我们更加客观地看待自己的成绩和不足,掌握改进的方向。尽量避免主观评价和情绪化的语言,保持客观中立的态度。以下总结范文包含了一些典型问题和思考,我们可以从中寻找自己的共鸣和切入点。

三角函数说课稿篇一

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

(1)任意角三角函数的定义;三角函数的.定义域;三角函数值的符号,

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性。

总体来说,由旧及新,由易及难,

逐步加强,逐步推进。

先由初中的直角三角形中锐角三角函数的定义。

过度到直角坐标系中锐角三角函数的定义。

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

三角函数说课稿篇二

陈老师的这节课是九年级下册地二十八章第一节的内容,这是一节很重要的内容,如果学生掌握不牢固,对后面的运用锐角三角函数解决实际问题则会遇到很大的困难。

陈老师这节课是一节成功的课,首先教学目标明确地体现在每一教学环节中,教学手段紧密地围绕目标,为实现目标服务。尽快地接触重点内容,重点内容的教学时间得到保证,重点知识和技能得到巩固和强化。先是引导学生一起明确本节课的学习目标、重点和难点。然后利用熟悉的情境引导学生小组合作探究,是学生主动参与教学活动。通过复习我们学过的三角函数,明确这些函数中的自变量,应变量各是什么?进行新课的探究。

在探究sin30?=?cos30?=?tan30?=?时完全由学生小组合作讨论得出,教师只是总结,整个课堂收放适当,进而利用类比的方法探究45?60?和角的三角函数值,通过探究完成表格,然后巧记。再利用知识开始习题的应用练习,加以对知识的巩固。

1、整个教学过程思路清晰,层次分明,使不同的学生都能有所收获。整个课堂结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。学生也很配合,整个课堂气氛挺活跃,学生都积极地参与了问题的思考,教学效果比较高。

2、活处理教材,教法学法得当。课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”纵观这节课,陈老师不是简单的知识传授者,而是一个组织者、引导者。陈老师教学时采用讨论,抢答等活动调动了大部分学生的学习主动性,通过学生合作、交流,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的见解。学生始终保持着高昂的学习情绪,感受到了学习数学的快乐,体验到了成功的喜悦。

3、不愧是有经验的教师,不论从教学设计还是整个课堂的控制,都井然有序,板书工整,自己美观,可以看出陈老师在每上一节课都做了充分的课前准备工作,也给我启示,好的课堂前提要有充分的课前准备。

“教学是一门遗憾的艺术”。陈老师的这节课也存在一些遗憾,为此我提出个人不成熟的看法:

1.教学中可通过精炼、精彩的语言鼓励学生、及时点拨学生、评价学生。

2.课堂上学生回答的错点误点也是很好的教材,可加以利用突破实际问题转化为数学模型的难点。

教学因学生成而精彩,因缺憾而美丽。陈老师的这节课虽然也有一点点缺憾,但整体上还是较好的一堂课。

以上愚见,请各位老师指正。

三角函数说课稿篇三

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

学生已经掌握的内容,学生学习能力。

1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性。

教学过程分析。

总体来说,由旧及新,由易及难,

逐步加强,逐步推进。

先由初中的直角三角形中锐角三角函数的定义。

过度到直角坐标系中锐角三角函数的定义。

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答。

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

知识点二:三个三角函数的定义域。

知识点三:三角函数值的正负与角所在象限的关系。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

小结回顾课堂内容。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

板书设计(见ppt)。

三角函数说课稿篇四

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

重点:进行含有30°、45°、60°角的三角函数值的计算。

难点:记住30°、45°、60°角的三角函数值。

教师准备。

预先准备教材、教参以及多媒体课件。

学生准备。

教材、同步练习册、作业本、草稿纸、作图工具等。

教学流程设计。

教师指导学生活动。

1.新章节开场白.1.进入学习状态.

2.进行教学.2.配合学习.

3.总结和指导学生练习.3记录相关内容,完成练习.

教学过程设计。

1、从学生原有的认知结构提出问题。

2、师生共同研究形成概念。

3、随堂练习。

4、小结。

5、作业。

板书设计。

3、例题。

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

三角函数说课稿篇五

本节课是第一轮初三中考总复习有关锐角三角函数的复习课,根据现在的中考特点及考纲要求,进行相应的复习和巩固。现就本节课的课堂教学评价如下:

1、正确分析现在中考命题的方向、热点及考纲要求,得出有关锐角三角函数考点的知识要点及各种题型,通过课堂教学在锐角三角函数的基本概念及运算等基础知识和基本技能得到相应的发展。

2、本节课采用分阶段,分层次归类复习。

(1)基本概念领会阶段。学生对概念,公式,定义的理解与掌握。

(2)基本方法学习阶段。使学生对有关基本技能训练,掌握课本例题类型,能举一反三,触类旁通。

(3)针对练习阶段。检查学生对基本概念,基本技能的掌握情况。

3、本节课选题方面有以下几个特点。

(1)有针对性,突出重要的知识点和思想方法。

(2)具有一定的应用性,即能考察学生的数学基础知识,又能考察学生的数学应用能力。

(3)富有一定的思考性。有几个例题,有分类思想方法,能锻炼学生思维的灵活性。

(4)有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。

4、本节课教师能够充分调动学生上课兴趣,从而使学生复习数学的积极性,主动性发挥出来,这样做到以学生为主,教师起主导作用。

陈雪君。

这是一节初三的复习课,王老师在教案中讲到在近几年中考数学试题中,在锐角三角函数这节命题多以填空题,选择题的形式出现,主要考察三角函数的计算,三角函数的定义,三角函数的增减性,同角三角函数关系,互余三角函数关系。围绕着这个目标,王老师先让学生明白他们应该掌握什么,必须掌握什么,并精心设计了很多练习,从学生的反映中来看,大多数同学都掌握的比较好,基本达到了黄老师事先所制定的教学目标。

王老师教学基本功比较扎实,板书非常清晰,教态和语言有一定的号召力。对教学内容非常熟悉。我想如果把这节课分为两节课,那效果会更加好。

这是一节初三总复习课,内容是锐角三角函数。王老师以基础知识的复习、基本技能的训练为主,紧跟教学大纲,选择了几个典型例题,开拓了学生的知识面,丰富了学生的题型结构。同时向学生进行了一题多种解法思想的渗透,这样活跃了学生的思维,丰富了学生的知识内涵。老师对教材,教学大纲理解得非常透彻,对课堂把握能力强,反应很快,能积极跟上学生的思维,因时制宜的调整教学节奏,语速快而清晰,教态、板书也能给学生有积极的影响,富有感染力。例题的选择合理、新颖且有难度,即有常见的基本计算与证明,也有一定难度的探索型、操作型问题,更有对于知识点综合应用的综合题,层次鲜明,满足了不同奋斗目标学生的不同要求。教学上多媒体的运用,较直观地了解题意,提高解答的准确率,课堂上充分发挥了学生的主体性,以学生的发展为本,通过小组合作,增强了学生的合作意识,又取长补短,互相竞争,营造了良好的教学氛围,而教师知识组织者,只是参与、启发、点拨、纠偏,培养了学生的创造能力和发散思维能力。

三角函数说课稿篇六

教学内容:任意角三角函数的定义、定义域,三角函数值的符号。

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

学情分析:

学生已经掌握的内容,学生学习能力。

1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

知识目标:

(1)任意角三角函数的定义;三角函数的.定义域;三角函数值的符号,

能力目标:

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

德育目标:

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性。

教学过程分析。

总体来说,由旧及新,由易及难,

逐步加强,逐步推进。

先由初中的直角三角形中锐角三角函数的定义。

过度到直角坐标系中锐角三角函数的定义。

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答。

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

知识点二:三个三角函数的定义域。

知识点三:三角函数值的正负与角所在象限的关系。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

小结回顾课堂内容。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

板书设计(见ppt)。

三角函数说课稿篇七

1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。

2、教学目标的确定及依据。

a、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:

1)已知一个角的一个三角函数值能求这个角的其他三角函数值;

2)证明简单的三角恒等式。

b、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。

c、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

3、教学重点和难点。

重点:同角三角函数基本关系式的推导及应用。

难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。

学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。

1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。

2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。

例2、设计意图:

(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;还可以利用商数关系解决。

如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。

由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的'情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。

三角函数说课稿篇八

在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。

2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。

3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。

在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。

1、让学生自主研习,独立探究。

(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?

(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?

2、让学生合作学习、生生互动。

(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)。

(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。

3、精讲细评,师生合作(先由学生独立完成)。

(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)钟表上的钟摆长度为25cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1cm)。

分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力。

4、延伸迁移,形成技能。

(1)计算:sin60°—tan45°;cos60°+tan60°;

(2)某商场有一自动扶梯,其倾斜角为30°。高为7m,扶梯的长度是多少?

讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会。

在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。

三角函数说课稿篇九

各位同仁,各位专家:

教学内容:任意角三角函数的定义、定义域,三角函数值的符号。

地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

教学重点:任意角三角函数的定义

学生已经掌握的内容,学生学习能力

1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

(1)理解并掌握任意角的三角函数的定义;

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法

教法学法:温故知新,逐步拓展

(2)通过例题讲解分析,逐步引出新知识,完善三角定义

运用多媒体工具

(1)提高直观性增强趣味性。

教学过程分析

总体来说, 由旧及新,由易及难,

逐步加强,逐步推进

先由初中的直角三角形中锐角三角函数的定义

过度到直角坐标系中锐角三角函数的定义

再发展到直角坐标系中任意角三角函数的定义

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排

引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答

sina=对边/斜边=bc/ab

cosa=对边/斜边=ac/ab

tana=对边/斜边=bc/ac

逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到

知识点一:任意一个角的三角函数的定义

提醒学生思考:由于相似比相等,对于确定的角a ,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义

例1已知角a 的终边经过p(2,—3),求角a的三个三角函数值

(此题由学生自己分析独立动手完成)

例题变式1,已知角a 的大小是30度,由定义求角a的三个三角函数值

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域

由学生分析讨论,得出结论

知识点二:三个三角函数的定义域

知识点三:三角函数值的正负与角所在象限的关系

由学生推出结论,教师总结符号记忆方法,便于学生记忆

例题2:已知a在第二象限且 sina=0。2 求cosa,tana

求cosa,tana

综合练习巩固提高,更为下节的同角关系式打下基础

拓展,如果不限制a的象限呢,可以留作课外探讨

小结回顾课堂内容

课堂作业和课外作业以加强知识的记忆和理解

课堂作业p16 1,2,4

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)

课后分层作业(有利于全体学生的发展)

必作p23 1(2),5(2),6(2)(4) 选作p23 3,4

板书设计(见ppt)

您可能关注的文档