2023年反比例函数图象与性质教学设计(优质8篇)

  • 上传日期:2023-11-11 17:44:30 |
  • ZTFB |
  • 9页

竞争是现代社会的主旋律,无论是学业还是职场,我们都需要具备竞争力才能脱颖而出。鉴于这个问题的重要性,我们需要思考一个更完善的解决方案。希望通过阅读这些总结范文,可以为大家提供一些灵感和启示。

反比例函数图象与性质教学设计篇一

刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图象,二是由图像得出比例函数的性质。而难点是反比例函数图象的画法及探究反比例函数的性质。

首先,本节课在反比例函数图象的画法这一难点的处理上,我先让学生自学课本内容,根据自学指导完成练习,再由教师利用多媒体演示列表、描点、连线过程,特别注意自变量x的取值范围,然后,学生在给出的坐标纸中描点画图,我运用多媒体及时矫正,学生很容易发现自己画图中的错误,最后概括总结水到渠成。本节课在探究反比例函数的性质这一难点的处理上,学生通过自主完成图像的画法,观察、比较归纳出反比例函数的性质。我感到课前确定的教学目标基本达成。

其次,通过引导学生自主探索反比例函数的性质,全班学生都能够主动地去观察、感受、讨论、发现、探究、总结,表现了他们的学习兴趣和信心。实现了学习中让学生自己动手、主动探索、合作交流的目的。同时通过练习让学生理解“在每个象限内”这句话的必要性,学生再一次体会数学的严谨性。根据新课标精神,“人人学有用的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”最后在练习时给出有梯度的练习,以满足不同层次学生学习的需要。如应用性质“题组训练、巩固练习”都能很好的体现分层教学的要求。

然而,由于学生刚刚接触反比例函数的图像,图像的外在形式(双曲线)与一次函数的图像(直线)之间存在较大的差异,学生还缺乏对反比例函数图像“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图像“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,导致学生在课后完成作业时,对部分问题的解决可能出现偏差。这些在接下来的教学中要加强引导。通过引导学生对函数图象的分析,可以培养学生抓特征图形的能力,让他们在以后的学习中,对图形可以进行更好的分析,同时提高应用图形的能力。而在整个教学中我对学生只是一个在方法上的引导者,鼓励、帮助学生自己去发现问题、探究问题,这也是我以后的教学指向。

反比例函数图象与性质教学设计篇二

课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。

主要表现在:

1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。

2、重视合作交流,使学生在合作交流的过程中真正掌握作图的技能。

3、相互评价可以培养学生之间团结合作的精神。在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。

4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法。

在教学中需要解决的问题:主要是要注重提高学生分析问题、解决实际问题的能力。

(二)多题一解是本章遇到的常规情况,要强化一题多解。使学生从题海中得到升华。在以后的学习中,有很多问题无一例外地应用了图象的特点解决,通过归类,可以使学生在这一方面驭轻就熟。

反比例函数图象与性质教学设计篇三

本节课的教学优点:

一、定位较准,立足于本校学情。由于学生基础较差,本节复习是按知识点复习,目的是落实知识点和掌握一些基本的题型,通过教学来看目标已达成。

二、习题设计合理,立足于思维训练。本节课每个知识点都设计了针对性的练习,通过练习学生的解体技巧、方法、思维都得到了解决。

三、注重了数学思想方法的渗透。在反比例函数的性质教学时,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,采用讨论的观点,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结出这其中体现出的数学思想方法:分类讨论和数形结合的思想方法。不足之处:。

一、预见性不够。这主要体现在知识回顾中的第二题,本来打算一点而过,结果学生的回答偏离了老师的预想,老师势必站在学生的角度给他们一一纠正,从而浪费了时间,自己对于突发事件的处理灵活性还不够,掌控课堂的能力有待提高。

二、对学生的情感关注太少。如果在一开始就用生动活泼激趣的语言导入课题,在教学过程中对少数同学的回答能及时给予表扬和激励,不但能消除学生的紧张情绪,也能激发学生的兴趣,坚定学习的信心。

三、角色转换不彻底。在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.不能大胆放心把课堂交还给学生.

今后还需要改进的地方:

一、在上课过程中,要始终关注学生的情感。因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。

二、不断学习新的教育理论,不断更新教学观念,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清”庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。

反比例函数图象与性质教学设计篇四

反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数图像的直观效应,让学生在图像上凸出反比例函数所具有的性质,这一个过程是在学生积极探索与讨论交流达成的共识。我认为这个经验比较重要,虽然在这个过程耽误了很多时间,但毕竟是学生收获的结果。在引导例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的'思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。

不足与改进:在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在活动一画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,()说出具体的图象的特征,为活动二猜想作很好的铺垫.我的改进设想是:在活动一画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?”留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心。

反比例函数图象与性质教学设计篇五

(1)列表(取值的特殊与有效性)。

x-8-4-2-1-1/21/21248。

(2)描点(描点的准确)。

(3)连线(注意光滑曲线)。

注:(1)x取绝对值相等符号相反的数值。

(2)x取值要尽可能多,而且有代表性三:练习。

(3)连线时用光滑曲线从小到大依次连接。

(4)图象不与坐标轴相交。

(1)当k0时,两支曲线分别位于第一、三象限,

(2)当k0时,两支曲线分别位于第二、四象限.

反比例函数图象与性质教学设计篇六

这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。

课堂设计程序是:例题1研究从双曲线上任意一点p作坐标轴的垂线,围成的长方形pqor的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点p作x、y轴的垂线三角形pqo的面积与k的关系,得到从双曲线上任意一个动点p作坐标轴的垂线,围成的长方形s1、s2、s3的面积总有s1=s2=s3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。

在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的.解析式的题目类型学生的达成率不够好,要加强这方面的训练。

反比例函数图象与性质教学设计篇七

1、反比例函数的图象和性质,是“数”与“形”的统一体,本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。

2、借助直观图形,帮助学生思考相关的问题,即考虑“已经”形式化的`“数”的本质“特征”,又使“数”、“形”之间达到统一。

3、在总结得出反比例函数的图象和性质之后,我为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。

二、教学效果的达成。

在教学中,通过“观察探究,形成新知”环节,学生能够在教师的引导下,说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,完成列表、描点、画出反比例函数图象的过程,也可以通过观察所画出的反比例函数的图象,得出其图象的“特征”和函数的“性质”。

然而,由于学生刚刚接触反比例函数的图象,图象的外在形式(双曲线)与一次函数的图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,这致使学生在“课堂检测”时,对部分问题的解决出现偏差。

但是,我们在运用“类比”的方法研究反比例函数的过程中,还应注意“趋同求异”,关注反比例函数与一次函数之间的“差异性”,如图形的“曲”与“直”、“间断”与“连续”等,这样的认识,在本课教学时,应加以强调,并传达给学生。

反比例函数图象与性质教学设计篇八

知识与技能:

1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教师画图中要规范,为学生树立一个可以学习的模板。

激发诱导,探索交流,讲练结合三位一体的教学方式。

教师画图,学生模仿。

三角板,小黑板。

学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。

1、什么叫做反比例函数;

(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。)。

(1)k为常数,k0。

(2)从y=中可知x作为分母,所以x不能为零。

y=kx+by=kx。

k0一、二、三一、三。

b0一、三、四。

k0一、二、四二、四。

b0二、三、四。

可以。

问题3:画图象的步骤有哪些呢?

(1)列表。

(2)描点。

(3)连线。

(教学片断:

师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

学生思考、交流、回答。

提问:你能画出的图象吗?

学生动手画图,相互观摩。

(1)列表(取值的特殊与有效性)。

x-8-4-2-1-1/21/21248。

(2)描点(描点的准确)。

(3)连线(注意光滑曲线)。

议一议。

(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

(4)曲线的发展趋势如何?

曲线无限接近坐标轴但不与坐标轴相交。

学生先分四人小组进行讨论,而后小组汇报。

做一做。

学生动手画图,相互观摩。

想一想。

观察和的图象,它们有什么相同点和不同点?

学生小组讨论,弄清上述两个图象的异同点。

相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)。

不同点:第一个图象位于一、三象限;第二个图象位于二、四象限。

反比例函数y=有下列性质:反比例函数的图象y=是由两支曲线组成的。

(1)当k0时,两支曲线分别位于第___、___象限。

(2)当k0时,两支曲线分别位于第___、___象限。

(1)已知函数的图象分布在第二、四象限内,则的取值范围是_________。

(2)若ab0,则函数与在同一坐标系内的图象大致可能是下图中的()。

(a)(b)(c)(d)。

(3)画和的图象。

在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标。

(2)习题5、2、1。

复习上节主要内容。

(5分钟)。

由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

(12分钟)。

引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质。

在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

注:

(1)x取绝对值相等符号相反的数值。

(2)x取值要尽可能多,而且有代表性。

(3)连线时用光滑曲线从小到大依次连接。

(4)图象不与坐标轴相交。

在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

(3分钟)。

此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

(5分钟)。

(4分钟)。

培养学生归纳,语言表达能力。

此中注意分类讨论思想的应用。

(2分钟)。

与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

(5分钟)。

这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

(4分钟)。

此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

(1分钟)。

本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

您可能关注的文档