智能制造汇报(精选18篇)

  • 上传日期:2023-11-19 23:04:06 |
  • ZTFB |
  • 7页

我们已经尝试了许多方法,但依然没有找到最佳解决方案。总结要注意形式的多样性,可以运用图表、数据等形式展示总结的结果。接下来是一些总结的样例,希望对大家有所启发。

智能制造汇报篇一

摘要:当前世界经济复苏艰难曲折、全球航运市场持续低迷、造船产能面临着严重过剩,市场竞争激烈。在这种形势下,振兴制造业,加快结构调整、全面转型升级、推动产业快速迈向高端,已成为全行业的共识。当前,我国船舶制造行业处于一个变革的时代。新一轮的工业变革已经开始,而其中,制造业数字化、网络化、智能化作为革命的核心力量。这场“智”造革命所带来的风暴,将深刻影响着我国造船业的未来。

关键词:船舶;智能制造;数字化;自动化1.引言。

西方发达国家振兴制造业走的是一条新路子,主要是依靠科技创新,抢占国际产业竞争制高点、增强经济发展核心竞争力,谋求未来发展的主动权。以智能化为核心的装备制造业变革正牵引着传统工业发展革命性的演变,正推动着全球新一轮科技创新高峰的形成。

德、英、日等国家相继推出一系列重振制造业的重大举措,力图在知识技术密集的高端制造业重塑竞争优势。如“工业4.0”是德国政府推出的《高技术战略2020》十大未来项目之一。作为一个风靡全球的概念,“工业4.0”提供了工业制造的新思维,被称为是继蒸汽机应用、规模化生产和电气、电子信息技术等三次工业革命后的第四次工业革命,其特征是以大数据为基础、以预测技术为核心的智能制造使用,目的是大幅度提高产品生产、产业链运行的质量和效率,推动实现传统制造业的转型。此外,美国提出了“先进制造业国家战略计划”,日本提出组建科技工业联盟,英国提出了“工业2050”。最近,中国也公布了中国版的“工业4.0”,即“中国制造2025”规划,并提出了“互联网+”计划。

专家表示,我国要着力改变造船业“大而不强”的局面,就要依靠创新驱动发展,推动中国造船业尽快实现智能化。而“互联网+”行动计划和“中国制造2025”战略的提出,为我国造船业实现从“量”到“质”的转变创造了机遇,同时也带来重大挑战。

“工业4.0”是继蒸汽机应用(机械时代)、电子信息技术(电气时代)和网络通信技术(信息时代)之后的第四次工业革命,最早在2013年4月的德国汉诺威工业博览会上正式提出,与美国通过程序提升“先进制造业”、推进“柔性制造系统”有异曲同工之妙。“工业4.0”为中国经济特别是制造业的转型升级、结构调整指明了发展方向。“工业4.0”其特征是基于信息物理系统、物联网和互联服务,通过大数据分析和云计算,以预测技术为核心来指导高效高品质生产的智能制造和应用,目的是大幅度地提高产品生产、运行的质量和效率,实现信息技术、物联网、智能生产和流通消费相融合的革命性方法,将彻底推动传统制造工业的服务化转型升级。

智能制造技术是在现代传感技术、网络技术、自动化技术是在现代传感技术、网络技术、自动化技术以及人工智能的基础上,通过感知、人机交互、决策、执行和反馈,实现产品设计过程、制造过程和企业管理及服务的智能化,是信息技术与制造技术的深度融合与集成。

智能化和自动化的最大区别在于知识的含量。智能制造是基于科学而非仅凭经验的制造,科学知识是智能化的基础。因此,智能制造包含物质的和非物质的处理过程,不仅具有完善和快捷响应的物料供应链,还需要有稳定且强有力的知识供应链和产学研联盟,源源不断地提供高素质人才和工业需要的创新成果,发展高附加值的新产品,促进产业不断转型升级。

“船舶工业4.0”,需要在现有信息化、自动化条件下构建网络—实体融合架构,通过适应于各类用户需求的评估、分析、预测和优化体系,以“多源数据条件下的多维评估与预测、实现协同优化”为核心,形成更具高附加值的船舶制造、使用、管理、物流等面向全生命周期的中国船舶工业全产业链,从而使得中国船舶工业未来能够更好地以市场为导向,以智能船舶为纽带,走向定制规模化、管理精细化、服务高效化,以更好地创造和实现新价值。“船舶工业4.0”将促使造船厂借助物联网、大数据、人工智能取代封闭性的生产制造系统,成为未来船舶工业的根基,彻底使我国由造船大国向造船强国转变。虽然“船舶工业4.0”还在探索,但新的变革浪潮必然会席卷而来,企业只有占得先机才能成为行业的引领者。

智能船舶不是单指船舶实体本身,而是一套完整的系统,其核心技术是网络和智能船舶融合、岸海一体的智能信息服务体系。智能船舶系统是通过设计企业、制造企业、运营企业和服务企业之间的信息共享,构建一个“网络化、系统化、智能化和服务化”的网络和智能船舶的融合架构,实现从设计、生产、运营到服务的全流程体系的协同,建立船舶全生命周期的产业链,通过相关数据的分析挖掘,为企业创造新的价值。智能船舶系统主要包括:智能设计、智能制造、智能船舶、智能操作、智能运营、智能服务以及云计算平台七大模块,如图1所示。

图1智能船舶系统体系结构。

智能船舶系统构建在云计算平台之上,实现数据的云存储以及大数据的分析与挖掘,系统以智能船舶实体为核心,涉及智能船舶的设计、制造、操纵、运营以及服务各功能模块,涵盖了智能船舶从设计制造到报废淘汰的整个生命周期数据的分析与应用。智能船舶系统的生命周期如图2所示。

智能船舶系统具有以下特点:

1)系统性。智能船舶系统不再单指船舶实体本身,它是由多个子系统集成的船舶与岸基一体化智能信息服务体系,主要包括船舶设计、制造、操作、运营、服务等系统。

2)网络性。系统的基础是基于网络互联,借鉴传感技术、互联网、云计算等先进技术,实现船舶设备与设备之间、设备与船舶、船舶与岸基、岸基与云中心等的网络联结,实现信息共享、远程控制与通信交流等。

3)智能性。智能船舶系统是一个多智能体系统,通过云计算平台对船舶相关大数据的分析、预测、评估、推理等,实现正确的决策,通过传感技术、虚拟技术、识别技术等理论方法,实现船舶设计、制造、操纵、运营、服务过程的智能化。

4)协同性。智能船舶系统涵盖了船舶设计企业、制造企业、运营企业以及服务企业,实现信息共享,企业之间可以相互提出请求和提供服务,实现协调运作与竞争,共同发展。5)柔韧性。系统能够适应快速变化的船舶设计、制造、运营和服务需求,通过大数据分析和沟通交流,能够对变化的市场需求做出及时的反应,具有较强的适应性。

6)追溯性。系统对船舶从设计、制造、使用、淘汰的全过程进行跟踪,对船舶出现的问题能够及时的追溯和处理。

3.2.1数据集成平台技术。

船舶平台信息集成系统是进行数据交换和业务系统运行的平台,它规范了信息交换和系统运行标准及接口定义等,为业务应用系统提供良好的系统接口、稳定的运行环境和严格的管理界面。船舶信息系统的结构如图3所示,其中处理机、智能传感器和带有数字化接口的设备物理地分布于船上的各个部位,各自独立运行,它们通过网络设备连接,构成一个分布式系统。该系统又是通过集成支撑环境将各个独立的系统连通集成进行信息交换和消息传递,形成一个有机的整体。船舶平台信息集成系统负责除指控系统外其他所有信息的共享与交换。资源管理中心、控制中心、信息管理中心和操控台之间的信息传输和消息传递统一通过船舶平台信息集成系统控制完成。

图3船舶信息系统的结构。

虚拟现实技术最早由美国vplresearchinc.公司提出的,涉及计算机、微电子、仿真与传感测量等众多高新技术,它是利用计算机在电脑上构造出一个与现实世界相同或相似的环境,人们通过虚拟设备就可以与虚拟环境进行交流互动,就像在现实世界中一样。人们不仅能从视觉上感知虚拟世界,同时也可以从嗅觉、听觉甚至触觉等方面来感知虚拟世界。在计算机中构造的虚拟世界是一个开放的环境,不仅能够对人们通过虚拟设备传递给它的信息做出反馈,还能够让人们“真实”地感知虚拟环境下的虚拟实物。

虚拟现实系统主要由五方面组成:虚拟引擎、输入/输出设备、软件和数据库、用户以及任务,其中虚拟引擎和i/o设备是虚拟现实系统的核心,他们之间是通过以下组成关系来完成虚拟任务的,如图3所示:

图3虚拟现实系统组成部分。

vr引擎是虚拟仿真系统的核心部位,通过读取输入设备中的数据信息,访问与任务相关的数据库并进行实时计算,完成相应工作任务,最后通过输出设备反馈任务结果。

i/o设备是实现虚拟环境交互性的基础。人们通过专门的数据接口给计算机发送命令,同时计算机也会将实时的模拟信息反馈给用户。比较常见的i/o设备有三维位置跟踪器,即传感衣、三维声音发生器、数据传感手套等。

软件和数据库,根据各个领域的应用侧重点不同,目前虚拟现实系统的vr仿真软件。

有很多种,软件和数据库的主要功能有两部分:

1)建立虚拟对象的几个模型,根据需要也可以加入物理属性和行为特性,同时构造虚拟对象层次结构,建立i/o设备到虚拟场景的映射。

2)创建虚拟环境,创建连通应用程序与虚拟世界的数据接口,从而实现人机交互。任务指的是虚拟现实系统需要完成的命令和工作。传统的虚拟现实系统主要运用在教育、娱乐、医疗和军事,新型的虚拟现实系统主要运用在机器人、制造业和信息可视化等领域。

虚拟现实技术的特点主要通过四个方面来表现,他们之间的关系如图4所示:

图4虚拟现实技术的特点。

多感知性:所谓多感知性就是除了一般计算机所具有的视觉感知之外,还拥有其他方面的感知,比如听觉感知、触觉感知、嗅觉感知、味觉感知、甚至运动感知等。沉浸感:沉浸感是指计算机生成的虚拟环境让人有一种真实的存在感,犹如身临其境,所有感知就像在真实世界一样。要有沉浸感,除了逼真的三维模型,还必须有人机交互作用才能够实现。

想象性:在进入虚拟环境时,不仅仅是依靠外设的一些虚拟设备,像数据手套之类的来提供沉浸感,同时也要通过想象把虚拟的环境构造出来,想象性从一方面也表达了作者的设计思路。

交互性:虚拟环境是一个开放的环境,它能通过人们输入的信息感知人们的意愿,并做出相应的反馈,交互性的优劣主要由实时性和自然性来体现。

在经济全球化的今天,国际市场竞争非常激烈,尤其是工程制造领域。新技术、新产品日新月异,这对新产品的设计开发和制造提出了更高的要求,企业要在这样严峻的挑战下生存发展,就必须有全新的、强有力的技术支撑,虚拟现实技术就是工程制造领域未来发展的技术力量。

4.1南通中远川崎船舶智能制造项目案例。

南通中远川崎的船舶制造智能车间建设,实现了各加工系列的智能制造,达到工装自动化、工艺流水化、控制智能化、管理精益化,保障了产品质量的稳定,缩短了加工周期,极大地提高了生产效率,产品质量和建造效率达到世界先进水平。

南通中远川崎在船舶智能化制造方面,率开国内先河,高度自动化的流水作业生产线加上柔性化的船舶生产工艺流程,实现了船舶制造的自动化操作和流水式作业。

1.型钢生产线。

型钢是船体常川部材之一,原先的生产方式.从画线、写字到切割、分料.完全采用手工作业,效率低。周期长.劳动强度大,且难免出现误操作。型钢自动化生产线建成后.实现了从进料一切割一自动分拣一成材分类叠放全过程的智能制造.包括物料信息传输和物料切割智能化以及物料分类感知智能化.配员由原来的20人减少为7人.有效减少了人工成本,缩短了生产周期.降低了劳动强度,为后续扩大机器人应用积累了经验。

2.条材机器人生产线。

尽管造船中厚板电弧焊接实现机器人作业困难很多,但南通巾远川崎还是从最简单的先行小组材开始,推进机器人焊接。传统的制造方式是,钢板在定盘上全面铺开。一块一块地装配、焊接、翻身、背烧,占用面积大,制造周期长.效率低。先行小组立机器人生产线投产后.实现了工件传输和焊接智能化,以及自动背烧、自动工件出料.整条生产线仅配一名员员操作,配员减少一半以上。流水线生产方式是工业化大生产的必然要求.对造船业而言.车间内生产作业的流水线化将是今后实施船舶智能制造的一个重要发展方向。目前南通中远川崎已实施了大舱肋骨生产线、y龙筋生产线、焊接装置等数个半自动化生产线技改项目,取得了良好的效果。

4.智能物流系统。

采用“横向到边、纵向到底”的设计原则,建立了功能完善的智能物流系统,并与设计系统高度集成,从而将企业的人力、资金、信息、物料、设备、时间、方法等各方面资源充分调配和平衡,为企业加强财务管理、提高资金运营水平、减少库存、提高生产效率、降低成本等提供强有力的支持。

4.2金海重工打造智能船厂之路。

船舶制造是一项传统产业,近年来,金海重工股份有限公司对其进行数字化和智能制造的改造,以期把企业打造成先进的智能船厂。目前,这项工作取得了一定进展和成效。

攻坚重点。

金海重工在开始打造智能化船厂时,非常重视数字化基础工作的落地。目前,金海重工主要围绕以下3个核心开展工作:一是生产计划管理与实施核心;二是物流核心;三是设计核心。

3个核心中有一个灵魂,就是生产计划管理与实施。这项计划管理工作不是一个数据管理,而是一个行为管理。它的里面包括了计划的制订和计划实施的监控,以及可控化的计划的落实。此项工作是金海重工众多数字化项目中比较通顺的。船厂的物流情况通常十分复杂,不仅厂外供应商物流复杂,而是厂内各种配料、送料等情况也十分繁琐。为此,金海重工搭建了一套完整的供应链系统。这套供应链系统从设计环节开始,包括设计、预算/规划、供应商、询价/合同、送货/质检、厂区物流、领导生产、托盘集配、仓诸管理等子项目。

金海重工十分重视设计工作,无图纸化设计是其目前大力推广的一项内容。与设计相关的各种工作,都离不开数据的支撑。为此,金海重工重点实施了把行为变成数据、让数据变成可控状态的一项工作。这项工作紧要,却十分艰巨,仅其中一项编码工作,就花了6个月的时间。注重工作协同船厂工作千端万绪,若要做好工作,必须加强协同。

计划生产。

计划生产这项工作,既涉及到销售环节,又涉及到供应链环节,而且它最后要落实到工人的岗位——金海重工采用的是给每个工人发派工作包的形式。这个工作包就是每名工人在作业开始的时候就必须要明确的落实的工作内容,包括工作对象、工作量、工作场地和工作中需要注意之处。

供应链。

金海重工的供应链很长,包括从供应商开始,经计划调度、项目管理到进库,及进库后的模块化出库。出库两个含义,一是外来产品组装件的组合,另一个是厂内产品和外来产品的组合——船舶行业称之为“托盘管理”。托盘管理需要在物流环节、运输环节等供应链中间充分地组合好。“托盘管理”中可能要涉及到上千个零部件,所以,这项工作的内容也是数字化集成和逻辑关系的一种表现。

生产过程智能化。

智能船厂的生产过程必须用自动化和数据化来完成,以实现产品的成本降低、质量提升和安全生产。目前,金海重工对此领域进行积极而成功的探索。

钢板自动标记。

这项工作远非一般人认为的买一块钢板然后在其上贴二维码那么简单。船厂在生产过程中会遇到一个很大的困难,钢板进厂后,必须进行高温高压条件下的预处理。如果事先把二维码贴在上面,那么钢板预处理结束后,二维码肯定消失了。所以,这就要求厂方加强钢板预处理前的一个编码控制。金海重工经过大量实验,解决了这个难题。钢板在预处理之后,编码也会留在上面,而且经过多少道工序,都会被找到,甚至它与其他原配料结合一起成为一个零件,都会留有数据基础。

数控联合集成数控设备已经应用了几十年,传统方式下都是单机操作,金海重工把它们改造成流水线作业组合的操作模式。目前在切割环节中进行了成功的应用。汽车行业是用机器人进行切割,而金海重工根据自身生产的特点和需求,用了焊接组合的方式来进行代替,取得了不错的效果。这种通过对现有设备以适应智能制造要求的模式,在以后还有很大的发展空间。

柔性模具。

船体的形状多变,不同的船型,所以要根据实际情况运用冷加工和热加工。所以,船厂就要设计一个柔性模态。用同一个模态应对所有船舶曲线、平面的加工。这其中数据的采集点和数据量,包括有线源的控制,金海重工投入很大精力才完成。

自动涂装系统。

船舶智能制造,需要在现有信息化、自动化条件下构建网络—实体融合架构,通过适应于各类用户需求的评估、分析、预测和优化体系,以“多源数据条件下的多维评估与预测、实现协同优化”为核心,形成更具高附加值的船舶制造、使用、管理、物流等面向全生命周期的中国船舶工业全产业链,从而使得中国船舶工业未来能够更好地以市场为导向,以智能船舶为纽带,走向定制规模化、管理精细化、服务高效化,以更好地创造和实现新价值。船舶智能制造将促使造船厂借助物联网、大数据、人工智能取代封闭性的生产制造系统,成为未来船舶工业的根基,彻底使我国由造船大国向造船强国转变。虽然船舶智能制造还在探索,但新的变革浪潮必然会席卷而来,企业只有占得先机才能成为行业的引领者。

[1]刘伟.智能制造与社会经济发展[j].学术探索.2014(4).[2]张驰.智能化引领船舶制造业变革[n].中国水运报.2015(5).[3]汤天浩.船舶智能化信息系统的探讨[j].上海造船.2007(3)[4]李光正,宋新刚,徐瑜.基于“工业4.0”的智能船舶系统探讨[j].2015(11).[5]程敬云,张圣坤,陆蓓.基于智能体的造船供应链[j].2000(6).[6]赵东,周宏.数字化造船系统研究[j].船舶工程.2006,28(3).[7]邱立强,杨剑征,赵川.国外数字化造船技术发展趋势研究[j].舰船科学技术.2015,37(7).[8]赵东,周宏.数字化造船系统研究[j].2006,28(3).[9]杨国兵,李柏洲,甘志霞.应用虚拟仿真技术推进数字化造船[j].2008,5.[10]胡可一.数字化造船在造船业中的应用[j].上海造船.2011,1.

智能制造汇报篇二

智能制造是21世纪的热门话题,它以人工智能、云计算、大数据等技术为基础,通过自动化和智能化的手段提高生产效率和产品质量。在探索智能制造的道路中,我获得了许多宝贵的经验和体会。在这篇文章中,我将分享我对智能制造的心得体会。

首先,智能制造带来了生产效率的显著提升。在过去,传统的生产方式往往需要大量的人力和时间来完成,而现在,智能设备和自动化系统的引入极大地提高了生产效率。比如,智能机器人可以在几个小时内完成之前需要数天才能完成的任务。此外,智能制造还能实现生产过程的智能监控和优化,通过实时收集和分析数据,预测和解决潜在的问题,从而有效避免了生产中的延误和故障,提高了整体的生产效率。

其次,智能制造带来了产品质量的全面提升。在传统制造过程中,由于人为操作的不确定性和疏忽,产品质量往往难以保证。而智能制造通过高精度的传感器和自动化控制系统,能够实现对生产过程的实时监测和调整,从而有效地避免了人为因素对产品质量的影响。例如,智能制造可以监测设备的工作状态和性能,及时发现和修复故障,确保产品的标准化和一致性。此外,通过大数据的分析和应用,还可以实现对产品质量的预测和改进,进一步提升产品的品质水平。

再次,智能制造推动了生产模式和经济结构的转型升级。在传统生产模式中,往往需要依靠人力来进行机械重复性劳动,劳动生产率有限,生产成本也比较高。而智能制造的引入,使得生产模式发生了根本性的转变。智能机器人和自动化设备的使用,不仅能够提高生产效率和产品质量,还能够减少生产成本和劳动强度,提高企业的竞争力和市场占有率。此外,智能制造还带动了新兴产业的发展,如人工智能、云计算和物联网等领域,为经济结构的转型升级提供了强有力的支撑。

最后,智能制造对人力资源的需求也提出了新的挑战。智能制造的不断发展和普及,需要越来越多的高技能、高素质的工作人员来进行研发、设计和维护。与此同时,智能制造的崛起也将导致一些低技能、低素质的人力资源流失,这对于传统制造业的转型和转型是一大挑战。因此,我们应该加强对教育培训的重视,培养更多的技术人才,提高劳动者的综合素质,以适应智能制造时代的发展需求。

总之,智能制造是时代发展的必然趋势,它为生产效率的提升、产品质量的改进、生产模式的转型、经济结构的升级和人力资源的需求提出了新的挑战和机遇。通过我对智能制造的学习和实践,我深刻地认识到了智能制造的重要性和潜力,也为我未来的工作和学习提供了许多有益的借鉴和启示。我相信,在智能制造的引领下,我们的社会将迎来更加繁荣和进步的未来。

智能制造汇报篇三

随着人工智能技术的不断发展,智能制造已经成为新时代制造业的发展趋势。在学习和实践智能制造过程中,我收获颇丰。在本文中,我将分享我的心得体会。

一、技术的基础与应用的要求。

智能制造需要一定的技术基础,包括但不限于人工智能、物联网、云计算、大数据等。这些技术的综合应用提升了工业生产的效率和品质。而实现智能制造还需要一些应用的要求,例如对数据的纠错处理、工作流的优化、设备的复杂管理等。在实际应用中,需要将技术和应用结合起来,才能真正发挥智能制造的优势。

二、数据的价值与挖掘。

在智能制造的生产过程中,数据是非常重要的资源。数据挖掘可以有效地识别潜在问题,提高产品质量。同时,数据分析可以为公司提供更准确、详细的市场分析和公司业务战略分析。各类的监测数据、工艺数据、质量数据的收集和分析等模块全面提升工厂监测水平,更好地满足客户的需求。

三、产品配置能力提升。

智能制造还可以实现产品的可配置化,从而让产品与消费者需求更加贴近。基于这种模式的定制化生产将大大降低生产成本,提高生产效能,同时也使生产线更具灵活性。这种定制化生产的特点还在于大大缩短交货期,提高客户满意度。智能制造能够在产品设计上更好地满足市场需求,优化产品,进一步提高产品配置能力。

随着智能制造技术的发展,它为企业带来了巨大的机遇,但也给企业带来了很多的挑战。智能制造要求企业加强基础设施的建设、提高机器人智能化水平、优化工作生态等方面。同时,企业需要打造一支具有高素质和多元化的团队,加强对员工的培训,以应对日渐复杂的企业生存环境。

我们要把发展智能制造的思考扩展到整条产业链、整个价值链,思考工业体系更高的质量和效益,而不是仅仅考虑单一企业的竞争力。同时,我们也要认真考虑新时代智能制造所面临的问题和将智能制造与社会及环境可持续发展的需求相结合的方式。我们要深入理解智能制造的本质,探索智能制造未来的前景和挑战。

总结。

在智能制造的发展过程中,我们需要优化整个生产链和流程,提高生产效率和产品质量。同时,在实践应用中,我们还需要考虑人性化的智能制造,充分发挥智能制造的人性化优势。同时,我们也要重视智能制造所带来的社会责任和可持续发展。在这个新时代,智能制造是我们重要的发展机遇之一,需要我们不断地学习和发扬智慧。

智能制造汇报篇四

随着科技的不断进步和发展,智能制造正成为现代制造的重要趋势,引领着各行业的转型升级。对于我个人而言,智能制造的学习和实践给了我很多启发和深刻体会。在这篇文章中,我将分享我对智能制造的心得体会,并探讨智能制造对未来的影响。

第一段:智能制造的定义与意义。

智能制造,顾名思义,是利用先进的技术和智能化系统来进行生产制造的一种模式。相比传统的制造模式,智能制造更加注重数据的收集与分析,通过人工智能和自动化设备的应用,实现生产的智能化和自动化,从而提高生产效率和产品质量。智能制造的意义在于为企业提供了更高效、更精确的生产方式,同时也为市场提供了更多更优质的产品选择。

第二段:智能制造带来的变革与挑战。

智能制造的出现给传统的制造业带来了巨大的冲击和挑战。一方面,智能制造解决了传统制造中的许多问题,如产能低下、质量难以保证、生产过程不透明等。另一方面,智能制造也改变了传统制造的工作模式,许多熟练工人的技术和经验也随之被取代。因此,智能制造对于传统制造企业来说既是机遇也是挑战,需要进行全面的转型和升级。

智能制造的优势有很多,首先是提高生产效率。通过使用智能设备和自动化系统,生产过程更为稳定和高效,大大提高了生产效率。其次是降低生产成本。智能制造可以减少人力成本和浪费,有效降低企业的生产成本。此外,智能制造还可以提高产品质量,减少产品缺陷和不合格率。智能制造的应用也十分广泛,涵盖了诸多行业,包括汽车、机械、电子、医疗等等。

智能制造正成为推动经济发展和社会进步的重要力量。未来,智能制造将在各行业发挥越来越重要的作用。首先,智能制造将进一步改善产品质量和生产效率,使人们享受到更加高品质的商品和服务。其次,智能制造也将推动生产模式的进一步升级,鼓励创新和科技成果的转化。最重要的是,智能制造有望带来更多就业机会,尤其是高技能人才和科技人才的需求将大幅增加。

第五段:智能制造的发展与展望。

智能制造的未来发展是不可限量的。随着人工智能、大数据、云计算等技术的不断发展,智能制造将进一步拓展应用领域。未来,智能制造将更注重研发创新,提高自主研发的能力,进一步提升技术水平。同时,智能制造也需要解决一系列挑战,如数据隐私和网络安全等问题。只有克服这些困难,智能制造才能更好地发展并发挥其巨大的潜力。

总结:

智能制造是推动现代制造业进步的重要力量,它的出现改变了传统制造的工作方式,同时也为企业带来了更多的机遇和发展空间。我对智能制造的学习和实践让我深刻理解到智能制造的优势和应用,以及其对未来的巨大影响。我对智能制造的展望是乐观的,相信随着技术的不断进步和创新的推动,智能制造会为人们创造更加美好的未来。

智能制造汇报篇五

智能制造是指借助先进的信息技术和自动化技术,实现生产过程中的智能化与自动化的生产模式。智能制造的发展正带动着工业的变革,为企业提供了更高效、更精确的生产方式。在实践中,我深刻体会到了智能制造所带来的巨大变革和影响。以下是我的心得体会。

首先,智能制造为企业带来了生产效率和质量的显著提升。传统制造需要依靠人工操作,容易出现人为因素带来的误差和延误,而智能制造通过自动化技术减少了这些问题的发生。例如,通过机器人的运作,生产线上的生产过程不再需要人力操作,能够实现更高的精度和速度。同时,智能制造还可以实时监控生产过程中的各种数据,迅速发现并解决问题,避免了质量不合格的产品出厂,提高了整个生产线的质量水平。

其次,智能制造实现了生产过程的信息化和数字化。通过智能制造,企业可以将生产过程中的各个环节进行数字化管理,并将其数据化处理。这样一来,企业能够通过大数据分析,实时了解生产过程中的各项指标,包括生产进度、库存情况、设备状态等,从而更好地进行生产计划和资源调配。通过实时数据的监控和精确分析,企业能够更好地实现生产过程的优化和改进,提升生产效率和资源利用率。

第三,智能制造使企业更加灵活和适应市场需求。在传统制造模式下,企业生产的产品通常是单一的、固定的,难以应对市场需求的变化。而智能制造则能够通过灵活的生产线配置和自适应的生产模式,能够根据市场需求实现快速转型和生产调整。例如,通过智能化生产设备,企业可以快速更换生产线上的模具和工具,实现不同类型产品的生产;通过智能化物流系统,企业可以实现快速的配送和响应客户需求,提高了企业的市场竞争力。

第四,智能制造加速了生产过程中的创新和技术进步。在智能制造中,创新和技术进步是企业保持竞争优势的重要环节。通过智能制造,企业能够更好地应用先进的技术和方法,不断推进产品和生产工艺的创新。例如,通过人工智能和大数据分析,企业能够发掘出产品设计和生产工艺的创新点,实现产品的个性化定制和批量生产。智能制造的发展还带动了相关技术的快速进步,如机器人技术、物联网技术等,推动了工业领域的技术革新。

最后,智能制造对企业员工的素质要求提出了新的挑战。传统的制造模式下,企业员工只需要具备基本的操作技能即可,而智能制造则要求员工具备更高的科技素质和技术能力。例如,员工需要掌握相关的信息技术知识和智能设备的操作技巧,能够应对智能制造所带来的各种挑战。这也提醒了企业需要加大对员工的培训力度,提升员工的综合素质,以适应智能制造的发展需求。

综上所述,智能制造正在引领着工业领域的革命。通过智能制造,企业可以实现生产效率和质量的提升,生产过程的信息化和数字化,更加灵活地应对市场需求,加速技术创新和提升员工素质。然而,智能制造的发展也面临着一些挑战,如技术投入和人才培养。只有充分认识并迎接这些挑战,企业才能真正享受到智能制造所带来的巨大潜力和机遇。

智能制造汇报篇六

随着物联网、大数据和移动应用等新一轮信息技术的发展,全球化工业革命开始提上日程,工业转型开始进入实质阶段。在中国,智能制造、中国制造2025等战略的相继出台,表明国家开始积极行动起来,把握新一轮工发展机遇实现工业化转型。智能工厂作为工业智能化发展的重要实践模式,已经引发行业的广泛关注。到底什么是智能工厂?智能工厂的核心架构是怎样的?能为企业的转型提供哪些支撑?这都是企业比较关心的话题。

本文以三一重工18号工厂为例,分析智能工厂的主要特点还有其智能化的框架。

1数字化工厂、智能工厂和智能制造。

1.1数字化工厂。

对于数字化工厂,德国工程师协会的定义是:数字化工厂(df)是由数字化模型、方法和工具构成的综合网络,包含仿真和3d/虚拟现实可视化,通过连续的没有中断的数据管理集成在一起。数字化工厂集成了产品、过程和工厂模型数据库,通过先进的可视化、仿真和文档管理,以提高产品的质量和生产过程所涉及的质量和动态性能:

智能工厂是在数字化工厂的基础上,利用物联网技术和监控技术加强信息管理服务,提高生产过程可控性、减少生产线人工干预,以及合理计划排程。同时,集初步智能手段和智能系统等新兴技术于一体,构建高效、节能、绿色、环保、舒适的人性化工厂。

图2。

智能工厂是在数字化工厂基础上的升级版,但是与智能制造还有很大差距。智能制造系统在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等。通过人与智能机器的合作,去扩大、延伸和部分地取代技术专家在制造过程中的脑力劳动。它把制造自动化扩展到柔性化、智能化和高度集成化。

智能制造系统不只是“人工智能系统,而是人机一体化智能系统,是混合智能。系统可独立承担分析、判断、决策等任务,突出人在制造系统中的核心地位,同时在智能机器配合下,更好发挥人的潜能。机器智能和人的智能真正地集成在一起,互相配合,相得益彰。本质是人机一体化。

国内很多企业都在炒作智能制造,但是绝大多数企业还处在部分使用应用软件的阶段,少数企业也只是实现了信息集成,也就是可以达到数字化工厂的水平;极少数企业,能够实现人机的有效交互,也就是达到智能工厂的水平[1]。

图32从大厂房到智能工厂。

在全球科技革命的大背景下,工程机械行业作为多品种、中批量、按订单生产的离散型技能密集型产业,要想向高端制造发展,必须依靠信息化建立先进的制造和管理系统[2]。

18号厂房是三一重工总装车间,有混凝土机械、路面机械、港口机械等多条装配线,是工程机械领域内颇负盛名的智能工厂。

在18号厂房,厂区旁边有两块电视屏幕,它们是一线工人的“老师”——不熟悉装配作业的工人,通过电子屏幕里的数字仿真和三维作业指导,可以学习和了解整个装配工艺[3]。三一重工的三维作业现场指导模式,成为了著名3d技术开发公司达索的全球最佳案例。

厂房更像是一个大型计算系统加上传统的操作工具、大型生产设备的智慧体,每一次生产过程、每一次质量检测、每一个工人劳动量都记录在案。装配区、高精机加区、结构件区、立库区等几大主要功能区域都是智能化、数字化模式的产物[4]。

当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,agv操作员发出取货指令,agv小车自动行驶至液压台取货[5]。取完货后,采用激光引导的agv小车,将根据运行路径沿途的墙壁或支柱上安装的高反光性反射板的激光定位标志,计算出车辆当前的位置以及运动的方向,从而将物料运送至指定工位。像这样的agv小车,在三一重工18号厂房有15台。

智能背后的生产模式进化。

2013年8月,三一重工集团启动新一轮制造变革。在大会上,三一重工董事长梁稳根这样描绘三一重工制造体系的蓝图:“所有结构件和产品都在很精益的空间范围内制造,车间内只有机器人和少量作业员工在忙碌,装配线实现准时生产,物流成本大幅降低,制造现场基本没有存货。”

制造模式的生产方式分散且独立,需要大量的人力物力予以配合,才能完成产品的生产制造,这使得生产效率低下的同时,生产成本还居高不下。因此三一重工开始借助信息化,在生产车间导入自动化制造模式。“部件工作中心岛”就是这样一个尝试。

所谓“部件岛”,即单元化生产,将每一类部件从生产到下线所有工艺集中在一个区域内,犹如在一个独立的“岛屿”内完成全部生产,故称为部件岛,将装配行业中“岛”的概念引入到结构件生产中,这是三一重工重机制造人员的首创。

3三一重工:智能工厂实践。

三一重工18号厂房是亚洲最大的智能化制造车间,有混凝土机械、路面机械、港口机械等多条装配线,是三一重工总装车间。2008年开始筹建,2012年全面投产,总面积约十万平方米。从2012年开始,以三一18号厂房为应用基础,由三一重工、湖大海捷、华工制造、华中科大等单位联合申报的“工程机械产品加工数字化车间系统的研制与应用示范项目”.经过3年精心建设,目前,三一已建成车间智能监控网络和刀具管理系统、公共制造资源定位与物料跟踪管理系统、计划、物流、质量管控系统、生产控制中心(pcc)中央控制系统等智能系统,完成了国家批复的项目建设内容[6]。

图4同时,三一还与其他单位共同研发了智能上下料机械手、基于dnc系统的车间设备智能监控网络、智能化立体仓库与agv运输软硬件系统、基于rfid设备及无线传感网络的物料和资源跟踪定位系统、高级计划排程系统(aps)、制造执行系统(mes)、物流执行系统(les)、在线质量检测系统(spc)、生产控制中心管理决策系统等关键核心智能装置,实现了对制造资源跟踪、生产过程监控,计划、物流、质量集成化管控下的均衡化混流生产,智能化功能和系统性能指标达到国家批复要求[7]。

3.1智能加工中心与生产线。

3.1.1智能化加工设备。

到了管理设备上,相对而言,管理设备要容易很多。3.1.2。

在实际加工中,有多种因素会对加工刀具产生影响,首先是加工工件本身的因素,如加工工件材质、结构型式、工件刚度等对刀具使用效果影响较大。其次是加工工装,定位基准、压紧方式、结构型式以及工装刚度等都会影响刀具使用效果。再次加工工艺方案,如加工顺序、切削三要素(切深、进给、切削速度)对刀具使用效果影响更大。最后是加工机床,设备的切削功率、设备的刚度、设备的结构型式、切削冷却介质对加工刀具发挥效率也有很大影响[8]。

dnc。

dnc是计算机与具有数控装置的机床群使用计算机网络技术组成的分布在车间中的数控系统。该系统对用户来说就像一个统一的整体,系统对多种通用的物理和逻辑资源整合,可以动态的分配数控加工任务给任一加工设备,是提高设备利用率,降低生产成本[9]。

图5。

3.2.1智能化立体仓库。

立体仓库后台运作的自动化配送系统由华中科大与三一联合研制,通过这套系统,三一打造了批量下架、波次分拣,单台单工位配送模式,实现了从顶层计划至底层配送执行的全业务贯通,大大提高了配送效率及准确率,准时配送率超95%。

三一智能化立体仓库总投资6000多万元,分南北两个库,由地下自动输送设备连成一个整体,总占地面积9000平方米,仓库容量大概是16000个货位。从南边仓库可以看到,这个库区有几千种物料,主要是泵车、拖泵、车载泵物料,能支持每月数千台产品的生产量。

智能化立体仓库的核心是agv智能小车,当有班组需要物料时,装配线上的物料员就会报单给立体仓库,配送系统会根据班组提供的信息,迅速找到放置该物料的容器,然后开启堆高机,将容器自动输送到立体库出库端液压台上。此时,agv操作员发出取货指令,agv小车自动行驶至液压台取货。取完货后,由于agv小车采用激光引导,小车上安装有可旋转的激光扫描器,在运行路径沿途的墙壁或支柱上安装有高反光性反射板的激光定位标志,agv依靠激光扫描器发射激光束,然后接受由四周定位标志反射回的激光束,车载计算机计算出车辆当前的位置以及运动的方向,通过和内置的数字地图进行对比来校正方位,从而将物料运送至指定工位。像这样的agv小车,在三一18号厂房有15台。在18号厂房南北智能化立体仓库,不仅有这样的agv自动小车,其后台配送也是自动化系统完成的。

图6。

3.2.3公共资源定位系统。

智能化生产执行过程控制。

3.3.

1高级计划排程。

执行过程调度。

系统除了通过各种方式如短信、邮件向管理者传递生产信息外,其设置在生产现场的mes终端机,给一线工人生产制造带来了极大的便利。

目前,三一在质检信息化方面,通过gsp、mes、csm及qis的整合应用,实现涵盖供应商送货、零件制造、整机装配、售后服务等全生命周期的质检电子化,并实现了spc分析、质量追溯等功能。

三一自动化立体仓储配送系统实现了该公司泵车、拖泵、车载泵装配线及部装线所需物料的暂存、拣选、配盘功能,并与agv配套实现工位物料自动配送至各个工位。

根据泵车、拖泵、车载泵装配线及部装线在车间的位置,北自所设计了两个库区,1#库负责泵车物料的储存、拣配功能,2#库负责拖泵、车载泵物料的储存、拣配功能,两个库区共用一个设置1#库区的入库组盘区域,2#库入库的物料在入库组盘区完成组盘后通过地下输送通道自动输送进入2#库库区存储。

仓储模式采用自动化立体仓库存储(主要储存中小件为主)+垂直升降库存储(主要储存小件为主)+平面仓库储存(主要储存大件等其他特殊物资)。自动化立体仓库和垂直升降库的数据采用一套软件进行统一管理,集中配送。通过垂直升降库的应用,解决了将近总量30%的物料种类的储存和出入库作业模式,很大程度地缓和了自动化立体仓库的出入库作业压力,有效地提高了整个系统的作业能力。

拣配模式采用提4台套提前一班(8小时)拣配模式,按照工位进行配送。在两个库区分别设置了两层的配盘区域,根据装配工位数量及各工位装配物料情况,对配盘区域的拣配托盘位置进行分配,拣配过程中采用led显示屏+rf手持终端模式进行人工作业。北自所根据各工位装配物料情况,配合用户设计了多种不同的配送容器,采用多层存放,提高容器使用效率,减少线边容器数量,最终提高了agv系统的搬运效率。

智能化生产控制中心。

3.4.

1中央控制室。

1.生产计划及执行情况、设备状态、生产统。

计图;

2.智能计划系统操作界面;

3.生产现场监控、看板展示及异常报警;4.各区域监控信息;

5.设计部日常操作(支持10路信号同时切。

入);

6.各区域监控信息;

7.物流部日常操作(支持10路信号同时切。

入);

8.质量部日常操作(支持10路信号同时切。

入)。3.4.2。

现场监视装置。

全方位的工厂车间监控系统能实现对生产过。

程的全面监控和记录,保证生产现场的安全,以及现场事故的追溯和回放。3.4.3现场andonandon系统能够为操作员停止生产线提供一套新的、更加有效的途径。在传统的汽车生产线上,如果发生故障,整条生产线立即停止。采用了andon系统之后,一旦发生问题,操作员可以在工作站拉一下绳索或者按一下按钮,触发相应的声音和点亮相应的指示灯,提示监督人员立即找出发生故障的地方以及故障的原因。一般来说,不用停止整条生产线就可以解决问题,因而可以减少停工时间同时又提高了生产效率。

andon系统的另一个主要部件是信息显示屏。每个显示面板都能够提供关于单个生产线的信息,包括生产状态、原料状态、质量状况以及设备状况。显示器同时还可以显示实时数据,如目标输出、实际输出、停工时间以及生产效率。根据显示器上提供的信息,操作员可以更加有效的开展工作。

“工业4.0”被认为是以智能制造为主导的第四次工业革命或是工业体系革命性的生产方法,而智能工厂将是构成未来工业体系的一个关键特征。在智能工厂里,人、机器和资源如同在一个社交网络里自然地相互沟通协作,生产出来的智能产品能够理解自己被制造的细节以及将如何使用,能够回答“哪组参数被用来处理我”、“我应该被传送到哪里”等问题。同时,智能辅助系统将从执行例行任务中解放出来,使他们能够专注于创新、增值的活动;灵活的工作组织能够帮助工人把生活和工作实现更好地结合,个体顾客的需求将得到满足。德国工业4.0、美国ge工业互联网均是“工业4.0”的典范,但中国有自己特殊的国情,中国制造企业打造智能工厂,不能完全照搬国外模式,而是既要紧跟国际先进理念,还要符合中国企业的实际情况[13]。

4.2。

概念内涵。

美国与德国的工业发展战略核心均为cps(cyber-physicalsystem)系统,是典型的二元战略。美国是c(cyber,包括:数字、信息、网络等虚拟世界)+p(physical,包括机器、设备、设施等实体世界),德国是p+c,两国均是基于高素质劳动者、国家人力匮乏、企业高协同化、高法制化的基础之上而提出的战略;而中国装备水平较美国和德国有一定差距,数据采集分析决策能力也有局限,但中国具有人力资源优势,所以应该充分挖掘人的作用。因此,中国制造企业推进工业发展不能完全照搬发达国家的二元战略,更宜采用cpps(cyber-person-physicalsystem)人机网三元战略,充分体现人的能动作用。

图7。

所谓“三元战略”,包括劳动者及其技能、素养、精神、组织、管理等,cpps战略体现了以人为本,继续发挥与挖掘了中国在人力资源方面的优势,扬长补短,实现人与赛博、物理虚实两世界的融合和迭代发展,构建以赛博智能为目的的人机网三元战略方案更符合中国国情[14]。

所谓“六维智能理论”,就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂,这6个方面包括:

1.智能计划排产,是从计划源头上集成erp,进行aps高级排产。

2.智能生产协同,从生产准备过程上,实现。

物料、刀具、工装、工艺的并行协同准备。3.智能的设备互联互通,是cps信息物理系。

统的典型体现,实现数字化生产设备的分布式网络化通讯、程序集中管理、设备状。

态的实时监控等。4.智能资源管理,包括对物料、设备、刀具、量具、夹具等生产资源进行精益化管理、库存智能预警等。

5.智能质量过程管控,是对影响产品质量的生产工艺参数进行实时采集、控制,确保产品质量。

6.智能决策支持,是基于大数据分析的决策支持,形成管理的闭环,以实现数字化、网络化、智能化的高效生产模式。

总之,通过以上6个方面智能的打造,可极大提升企业的计划科学化、生产过程协同化、生产设备与信息化的深度融合,并通过基于大数据分析的决策支持对企业进行透明化、量化的管理,可明显提升企业的生产效率与产品质量,是一种很好的数字化、网络化的智能生产模式。

图84.3。

应用前景。

“六维智能”分别从计划源头、过程协同、设备底层、资源优化、质量控制、决策支持等6个方面着手实现智能工厂,这6个方面涵盖了工业生产的6个重要环节,可实现全面的精细化、精准化、自动化、信息化智能化管理与控制,通过底层设备的互联互通、基于大数据分析的决策支持、可视化展现等技术手段,实现生产准备过程中的透明化协同管理、数控设备智能化的互联互通、智能化的生产资源管理、智能化的决策支持,从而全方位达到智能化的生产过程管理与控制[15]。

具定制的,是海尔模具生态圈的主要组成部分,系统以生产设备为核心,从设备底层层面实现了机床、对刀仪等设备的互联互通与大数据分析,从生产管理层面实现了协同准备并行作业,从展现层面实现了生产信息的可视化。实施本系统后,操作工的作业效率从原来1个人管理3台设备提升到7~8台设备,设备利用率提升25%以上,使生产管理更加透明、科学、高效,应用效果比较明显,在海尔模具的数字化制造与管理中发挥了重要的作用。

5工业4.0落地战略。

近期,随着“工业4.0”的在网络上越炒越热,我国也推出了“中国制造2025”战略,在国家战略需求的驱动下,中国对于制造大国向制造强国的迈进之路也陡然提速,这将对中国制造转型升级打通主动脉。就企业层面来说中国版工业4.0如何落地将成为重点,如何通过信息技术和制造技术的深度融合,打通一切、联通一切是企业信息化建设的目标[16]。

工业4.0是什么?每个人站在不同的角度会有不同的理解,是互联、集成(纵向、横向、端到端)、数据、创新、服务、转型或是cps、是智能工厂、是智能制造亦或是国家战略、企业目标。工业4.0核心内容就是建一个网络、三项集成、大数据分析、八项计划和研究两个主题。

5.1。

建一个网络:信息物理网络系统(cps)。

cps是英文cyberphysicalsystem的缩写,就是讲物理设备连接到互联网上,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合,将网络空间的高级计算能力有效的运用于现实世界中,从而在生产制造过程中,与设计、开发、生产有关的所有数据将通过传感器采集并进行分析,形成可自律操作的智能生产系统。

图95.2。

三个集成工业4.0中的三项集成包括:横向集成、纵向集成与端对端的集成。工业4.0将无处不在的传感器、嵌入式终端系统、智能控制系统、通信设施通过cps形成一个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间能够互联,从而实现横向、纵向和端对端的高度集成,集成是实现工业4.0的重点也是难点。5.2.1纵向集成纵向集成主要解决企业内部的集成,即解决信息孤岛的问题,解决信息网络与物理设备之间的联通问题。5.2.2横向集成横向集成主要实现企业与企业之间、企业与售出产品之间(如车联网)的协同,将企业内部的业务信息向企业以外的供应商、经销商、用户进行延伸,实现人与人、人与系统、人与设备之间的集成,从而形成一个智能的虚拟企业网络。制造业普遍存在的工程变更协同流程就是这样一个典型的横向集成应用场景。5.2.3端到端的集成端到端集成就是把所有该连接的端头(点)都集成互联起来,通过价值链上不同企业资源的整合,实现从产品设计、生产制造、物流配送、使用维护的产品全生命周期的管理和服务,它以产品价值链创造集成供应商(一级、二级、三级„„)、制造商(研发、设计、加工、配送)、分销商(一级、二级、三级„„)以及客户信息流、物流和资金流,在为客户提供更有价值的产品和服务同时,重构产业链各环节的价值体系。

端到端的集成即可以是内部的纵向集成内容,也可以是外部的企业与企业之间的横向集成内容,关注点在流程的整合上,比如提供用户订单的全程跟踪协同流程,将用户、企业、第三方物流、售后服务等产品全生命周期服务的端到端集成。

大数据分析利用。

“工业4.0”时代,制造企业的数据将会呈现爆炸式增长态势。随着信息物理系统(cps)的推广、智能装备和终端的普及以及各种各样传感器的使用,将会带来无所不在的感知和无所不在的连接,所有的生产装备、感知设备、联网终端,包括生产者本身都在源源不断地产生数据,这些数据将会渗透到企业运营、价值链乃至产品的整个生命周期,是工业4.0和制造革命的基石。

总体来说,工业4.0关注的企业数据分为四类:5.3.1。

产品数据。

运营数据。

运营包括组织结构、业务管理、生产设备、市。

价值链数据。

包括经济运行、行业、市场、竞争对手等数据。为了应对外部环境变化所带来的风险,企业必须充分掌握外部环境的发展现状以增强自身的应变能力。大数据分析技术在宏观经济分析、行业市场调研中得到了越来越广泛的应用,已经成为企业提升管理决策和市场应变能力的重要手段。

工业4.0落地中国企业,工业大数据是一项重要抓手。利用工业大数据分析,可以找出隐性的问题并预测未知情况的发生,有助于及时地做好预防,避免故障和偏差。

6结论。

以三一重工18号工厂作为研究对象.对其运作方式、运作特点进行了较为详细地分析与讨论,从而得出工厂的智能化基因。并且进一步得出了智能工厂的框架,为系统化建设智能工厂打下了基础。主要的研究结论如下:

1.在理论上对数字化工厂、智能工厂和智能制造进行了分析指出,要又好又快地发展智能工厂就必须先建设好数字化工厂。

2.对比三一重工18号工厂实现智能化之后生产效率得到提升,直观地反映了智能化对制造业带来的好处。

3.通过对18号工厂的生产线、物流系统、执行系统、控制中心进行分析,找到了工厂可实现智能化的内在基因。也就是在设备联网+远程数据采集的基础上,实现智能化的生产过程管理与控制,从6个方面打造适合中国国情的智能工厂(1)。

4.概括了智能工厂的框架,提出了运用大数据分析,做好cps和三个集成是实现智能工厂的前提条件,而智能工厂的标志就是生产流程智能化,生产设备动态适应个性化的产品需求。

参考文献。

[1]李梦迪.基于以太网的智能工厂柔性制造生产。

智能制造汇报篇七

课程英文名称:

intelligent。

manufacturing。

of。

vehicle。

课程总学时:24。

讲课:24。

实验:

上机:0。

适用专业:车辆工程。

大纲编写(修订)时间:2017.9。

一、大纲使用说明。

(一)课程的地位及教学目标。

本课程是车辆工程专业的一门专业选修课。通过本课程的学习,使学生了解工业4.0智能制造在汽车生产中的应用,通过相关章节的学习,使学生能够掌握汽车智能制造理论、智能制造工艺、智能制造设备、智能管理系统等方面的知识,使学生能够学习到汽车生产制造中的前沿思想和技术,紧紧的把握汽车生产制造的发展方向。

(二)知识、能力及技能方面的基本要求。

通过本课程的学习使学生掌握智能制造在汽车生产过程中的应用,包括:智能制造在机械加工、冶金及塑料成型的应用;智能制造在发动机箱体、连杆、曲轴及装配中的应用;智能制造在底盘悬架、轴类、制动系统、车轮及装配中的应用;智能制造在车身冲压、装焊、涂装中的应用;智能制造在总装中的应用。重点掌握制造设备、工艺及其管理系统。使学生能够掌握工业发展的前沿知识,具备将前沿技术与汽车实际生产过程相结合能力。

(三)实施说明。

1.教学方法:以讲授教学为主,包括对主要原理和理论的讲解,对重点和难点问题,采用实例教学、启发式教学,增强学生对知识点的理解和记忆,并增加学生的互动环节,如分组讨论并进行讲解,课堂提问等形式,调动学生的积极性及课堂的参与度。

2.教学手段:结合本课程内容特点,以多媒体教学为主,通过电子讲义展示智能制造相关的内容、视频及图片,使学生能够直观的学习工业4.0的智能制造,避免教材内容晦涩,不直观的缺点,提高课堂信息量及学生学习效率。

(四)对选修课的要求。

本课程的教学必须在完成先修课程之后进行。本课程主要的先修课程有:汽车构造,汽车理论,汽车制造工艺学。

(五)对习题课、实践环节的要求。

对课堂所讲授的重要知识点,在课堂上安排习题或者思考题,增强学生的思考能力和解决问题能力,通过对习题或思考题的讲解,增强学生对知识的理解和记忆。

(六)课程考核方式。

1.考核方式:考查。

2.考核目标:重点考核学生对智能制造的理解及智能制造在汽车生产中的应用。

3.成绩构成:本课程的总成绩主要由两部分组成:平时成绩(包括课堂表现、出勤情况等)占30%,期末成绩占70%(期末成绩以小论文或者课堂测试的方式进行)。

按优、良、中、及格、不及格五等级给出最终成绩。

(七)参考书目。

《智能制造》,国家制造强国建设战略咨询委员会编,电子工业出版社出版,2016。

《智能制造之路:数字化工厂》,陈明等编,机械工业出版社,2016。

《智能制造:关键技术与企业应用》,谭建荣等编,机械工业出版社,2017。

《汽车制造工艺及装备》,丁柏群等编,中国林业出版社,2014。

二、中文摘要。

课程围绕汽车智能制造的相关知识展开,涵盖了智能制造在汽车发动机、底盘零部件、车身制造、总装等方面的应用,通过课堂讲解及演示,使学生学习智能制造在汽车未来生产中的应用,提高学生对智能制造的认识和理解。

三、课程学时分配表。

序号。

教学内容。

学时。

讲课。

实验。

上机。

2.1。

机械加工。

2.2。

冶金及塑料成型。

3.1。

箱体类零件制造。

3.2。

3.3。

发动机装配。

4.1。

4.2。

底盘总成装配。

5.1。

车身冲压。

5.2。

车身装焊。

5.3。

车身涂装。

合计。

四、大纲内容。

第1部分。

总学时2学时。

讲课。

2学时。

实验0学时。

上机0学时。

具体内容:

点:

汽车智能制造基础设备,自动化在汽车行业的应用,信息化在汽车制造中的应用。

点:

习题内容:

第2部分。

总学时4学时。

讲课。

4学时。

实验0学时。

上机0学时。

第2.1部分。

机械加工(讲课。

2学时)。

具体内容:

2)智能制造在冲压、焊接、切削中的应用。

点:

智能铸造系统,智能切削技术的设备及加工过程。

点:

习题内容:

智能切削技术可以应用于汽车哪些零部件的加工?

第2.2部分。

冶金及塑料成型(讲课。

2学时)。

具体内容:

点:

智能化设计在钢铁冶炼中的应用,3d打印技术在塑料成型中的应用。

点:

钢铁冶炼中管控架构及物理架构。

习题内容:

智能化钢铁冶炼有哪些优势?

第3部分。

总学时6学时。

讲课。

6学时。

实验0学时。

上机0学时。

第3.1部分。

箱体类零件制造(讲课。

2学时)。

具体内容:

1)数控技术在箱体加工中的应用。

2)柔性生产线在箱体加工中的应用。

点:

柔性生产线的组成,数控技术加工箱体的具体方式。

点:

柔性生产线的原理。

习题内容:

柔性生产线与传统生产线的主要区别?

第3.2部分。

连杆、曲轴制造(讲课。

2学时)。

具体内容:

点:

曲轴、连杆加工中的智能制造设备,工艺及流程。

点:

曲轴线自动监控管理系统的基本原理。

习题内容:

第3.3部分。

发动机装配(讲课。

2学时)。

具体内容:

1)发动机装配线智能管理。

2)发动机装配线智能设备。

点:

发动机混流装配线的智能管理,智能检测装配系统。

点:

发动机混流装配线管理策略。

习题内容:

发动机装配线智能设备有哪些?

第4部分。

总学时4学时。

讲课。

4学时。

实验0学时。

上机0学时。

第4.1部分。

底盘零部件制造(讲课。

2学时)。

具体内容:

点:

减振器,弹簧的智能加工,轮胎的智能加工。

点:

制动系统的智能加工。

习题内容:

悬架智能加工设备有哪些?

第4.2部分。

底盘总成装配(讲课。

2学时)。

具体内容:

1)底盘总成装配的自动化生产。

2)底盘总成装配的智能设备。

点:

底盘总成装配自动化流程,底盘总成装配主要设备及原理。

点:

自动化生产的基本原理。

习题内容:

智能制造如何应用在底盘总成装配过程中?

第5部分。

总学时6学时。

讲课。

6学时。

实验0学时。

上机0学时。

第5.1部分。

车身冲压(讲课。

2学时)。

具体内容:

点:

计算机模拟技术,计算机虚拟技术。

点:

模块式冲压技术基本原理。

习题内容:

计算机控制技术是如何提高冲压质量的?

第5.2部分。

车身装焊(讲课。

2学时)。

具体内容:

1)焊接机器人。

2)。

装焊生产线。

点:

装焊机器人组成及分类,装焊机器人在装焊线的应用。

点:

装焊生产线机器人布局策略。

习题内容:

装焊生产线机器人一般如何布局?

第5.3部分。

车身涂装(讲课。

2学时)。

具体内容:

1)智能涂装材料及工艺。

2)。

3)涂胶机器人。

4)喷涂机器人。

点:

水性涂装材料,柔性运输系统,生产线能耗控制。

点:

涂装生产线的实时监控。

习题内容:

智能生产线如何对能耗进行控制?

第6部分。

总学时2学时。

讲课。

2学时。

实验0学时。

上机0学时。

具体内容:

1)总装自动化。

点:

总装自动化设备及生产线布局,数字化物流配送系统及其设备。

点:

数字化物流的信息监控原理。

习题内容:

agv系统的基本构成。

智能制造汇报篇八

智能制造是指通过信息技术、物联网和人工智能等先进技术手段,使生产过程更高效、更智能的一种生产模式。近年来,随着科技的飞速发展,智能制造逐渐成为了各行各业的主流趋势。作为一名工程师,我有幸参与了智能制造项目的研发和实施,深刻体会到了智能制造的重大意义和巨大变革。下面就从项目意义、实施过程、经验总结、未来展望和个人收获几个方面,分享一下我对智能制造的心得体会。

首先,智能制造项目的意义非常重大,它不仅能够提高生产效率,还能够降低成本。在传统的生产模式中,往往需要大量的人力进行生产线上的工作,容易出现疏忽和错误。而通过引入智能设备和算法,生产过程可以更加自动化,避免了人为因素带来的问题。此外,智能制造还具备更好的灵活性和个性化定制能力,更好地满足了现代人们对产品的需求。因此,智能制造是推动传统产业转型升级的一个重要手段,也是提升国家制造业竞争力的关键。

其次,智能制造的实施过程需要充分考虑企业实际情况和技术研发水平。在我所参与的智能制造项目中,我们先进行了全面的需求分析和业务流程优化。通过与企业内部和外部专家的合作,我们找到了适合企业发展的智能制造方案,包括硬件设备的选型、系统架构的设计、软件开发和数据传输的安全等。接下来,我们进行了一系列的测试和试验,确保系统的稳定性和可靠性。最后,我们进行了上线实施和培训,确保企业员工可以顺利地使用智能制造系统。

在实施智能制造项目的过程中,我们也积累了一些宝贵的经验。首先,合理规划时间和成本是非常重要的。智能制造项目往往需要较长的周期和大量的投入,因此,项目团队需要在项目启动之初,制定详细的时间计划和成本预算。其次,挖掘企业内部的专家和资源是非常关键的。智能制造项目的实施需要多方合作,而企业内部往往拥有丰富的行业经验和专业技术,因此,我们要善于借助内部力量,提高项目的成功率。最后,良好的沟通和团队协作能够提高项目的效率和质量。智能制造项目往往涉及多个部门和技术领域,因此,团队成员之间的沟通和协作至关重要。

智能制造的未来展望令人充满期待。随着人工智能、大数据和物联网技术的不断发展,智能制造将会呈现出更多的创新和突破。例如,通过智能机器人和无人驾驶技术的引入,工厂的生产线将更加智能化和高效化;通过大数据分析和预测,企业可以更好地了解市场需求,实现精准定制和个性化生产。因此,未来的智能制造将会进一步提升产品质量和企业竞争力,推动工业领域的持续发展。

对我个人而言,参与智能制造项目是一次宝贵的经历和学习机会。通过与企业和专家的合作,我学到了很多实践经验和专业知识。我了解到,技术创新和实际应用是相辅相成的,只有将科技成果落地,才能真正发挥其作用。我还体会到了团队的力量和合作的重要性,只有共同努力,才能取得更好的成果。通过参与智能制造项目,我也更加坚定了我的职业发展目标,我希望能够继续深入研究智能制造领域,为推动我国制造业的发展做出更多的贡献。

总之,智能制造是一种具有广阔前景的生产模式,它将会对企业、社会乃至整个国家带来巨大的变革。通过我的参与和实践,我深刻领悟到智能制造的重大意义和实施过程的复杂性。我相信,在科技的不断进步和人们对高品质生活的需求下,智能制造将会得到更广泛的应用和发展,为社会的进步和繁荣做出更大的贡献。

智能制造汇报篇九

智能制造装备的定义是:具有感知、分析、推理、决策、控制功能的制造装备,它是先进制造技术、信息技术和智能技术的集成和深度融合。

“十二五”发展目标。

总体目标:经过10年的努力,形成完整的智能制造装备产业体系,总体技术水平迈入国际先进行列,部分产品取得原始创新突破,基本满足国民经济重点领域和国防建设的需求。

到2015年:

——产业规模快速增长。产业销售收入超过10000亿元,年均增长率超过25%,工业增加值率达到35%。智能制造装备满足国民经济重点领域需求。

——重点领域取得突破。传感器、自动控制系统、工业机器人、伺服和执行部件为代表的智能装置实现突破并达到国际先进水平,重大成套装备及生产线系统集成水平大幅度提升。

——组织结构优化升级。培育若干具有国际竞争力的大型企业集团,打造一批“专、精、特、新”的专业化企业,建设一批特色鲜明、优势突出的产业集聚区。

——创新能力显著提升。基本建成完善的产学研用相结合的产业创新体系,骨干企业研究开发经费占销售收入的比重超过5%。培养一大批知识复合型、具有国际视野的领军人才。

到2020年:

——将我国智能制造装备产业培育成为具有国际竞争力的先导产业。建立完善的智能制造装备产业体系,产业销售收入超过30000亿元,实现装备的智能化及制造过程的自动化,使产业生产效率、产品技术水平和质量得到显著提高,能源、资源消耗和污染物的排放明显降低。

发展概况发展内容。

根据《中国智能制造装备行业价值链与市场前瞻分析报告》[1]分析,重点推进高档数控机床与基础制造装备,自动化成套生产线,智能控制系统,精密和智能仪器仪表与试验设备,关键基础零部件、元器件及通用部件,智能专用装备的发展,实现生产过程自动化、智能化、精密化、绿色化,带动工业整体技术水平的提升。

例如,在精密和智能仪器仪表与试验设备领域,要针对生物、节能环保、石油化工等产业发展需要,重点发展智能化压力、流量、物位、成分、材料、力学性能等精密仪器仪表和科学仪器及环境、安全和国防特种检测仪器。

在关键基础零部件、元器件及通用部件领域,要重点发展高参数、高精密和高可靠性轴承、液压/气动/密封元件、齿轮传动装置及大型、精密、复杂、长寿命模具等。

在智能专用装备领域,要重点发展新一代大型电力和电网装备,机器人产业,全断面掘进机、快速集成柔性施工装备等智能化大型施工机械,以及大型先进高效智能化农业机械等。

智能制造装备是具有感知、决策、执行功能的各类制造装备的统称。作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能制造装备产业对于加快制造业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现制造过程的智能化和绿色化发展具有重要意义。

“十二五”期间,智能制造装备将面向国民经济重点产业的转型升级和战略性新兴产业培育发展的需求,以实现制造过程智能化为目标,以突破九大关键智能基础共性技术为支撑,以推进八项智能测控装置与部件的研发和产业化为核心,以提升八类重大智能制造装备集成创新能力为重点,促进在国民经济六大重点领域的示范应用推广。经过5~10年的努力,形成完整的智能制造装备产业体系,总体技术水平迈入国际先进行列,部分产品取得原始创新突破,基本满足国民经济重点领域和国防建设的需求。具体是:

一、九大关键智能基础共性技术。

1.新型传感技术——高传感灵敏度、精度、可靠性和环境适应性的传感技术,采用新原理、新材料、新工艺的传感技术(如量子测量、纳米聚合物传感、光纤传感等),微弱传感信号提取与处理技术。2.模块化、嵌入式控制系统设计技术——不同结构的模块化硬件设计技术,微内核操作系统和开放式系统软件技术、组态语言和人机界面技术,以及实现统一数据格式、统一编程环境的工程软件平台技术。

3.先进控制与优化技术——工业过程多层次性能评估技术、基于海量数据的建模技术、大规模高性能多目标优化技术,大型复杂装备系统仿真技术,高阶导数连续运动规划、电子传动等精密运动控制技术。

4.系统协同技术——大型制造工程项目复杂自动化系统整体方案设计技术以及安装调试技术,统一操作界面和工程工具的设计技术,统一事件序列和报警处理技术,一体化资产管理技术。

5.故障诊断与健康维护技术——在线或远程状态监测与故障诊断、自愈合调控与损伤智能识别以及健康维护技术,重大装备的寿命测试和剩余寿命预测技术,可靠性与寿命评估技术。

6.高可靠实时通信网络技术——嵌入式互联网技术,高可靠无线通信网络构建技术,工业通信网络信息安全技术和异构通信网络间信息无缝交换技术。

7.功能安全技术——智能装备硬件、软件的功能安全分析、设计、验证技术及方法,建立功能安全验证的测试平台,研究自动化控制系统整体功能安全评估技术。8.特种工艺与精密制造技术——多维精密加工工艺,精密成型工艺,焊接、粘接、烧结等特殊连接工艺,微机电系统(mems)技术,精确可控热处理技术,精密锻造技术等。

9.识别技术——低成本、低功耗rfid芯片设计制造技术,超高频和微波天线设计技术,低温热压封装技术,超高频rfid核心模块设计制造技术,基于深度三位图像识别技术,物体缺陷识别技术。

二、八项核心智能测控装置与部件。

1.新型传感器及其系统——新原理、新效应传感器,新材料传感器,微型化、智能化、低功耗传感器,集成化传感器(如单传感器阵列集成和多传感器集成)和无线传感器网络。

2.智能控制系统——现场总线分散型控制系统(fcs)、大规模联合网络控制系统、高端可编程控制系统(plc)、面向装备的嵌入式控制系统、功能安全监控系统。

3.智能仪表——智能化温度、压力、流量、物位、热量、工业在线分析仪表、智能变频电动执行机构、智能阀门定位器和高可靠执行器。

4.精密仪器——在线质谱/激光气体/紫外光谱/紫外荧光/近红外光谱分析系统、板材加工智能板形仪、高速自动化超声无损探伤检测仪、特种环境下蠕变疲劳性能检测设备等产品。5.工业机器人与专用机器人——焊接、涂装、搬运、装配等工业机器人及安防、危险作业、救援等专用机器人。

6.精密传动装置——高速精密重载轴承,高速精密齿轮传动装置,高速精密链传动装置,高精度高可靠性制动装置,谐波减速器,大型电液动力换档变速器,高速、高刚度、大功率电主轴,直线电机、丝杠、导轨。

7.伺服控制机构——高性能变频调速装置、数位伺服控制系统、网络分布式伺服系统等产品,提升重点领域电气传动和执行的自动化水平,提高运行稳定性。

8.液气密元件及系统——高压大流量液压元件和液压系统、高转速大功率液力偶合器调速装置、智能润滑系统、智能化阀岛、智能定位气动执行系统、高性能密封装置。

三、

1.石油石化智能成套设备——集成开发具有在线检测、优化控制、功能安全等功能的百万吨级大型乙烯和千万吨级大型炼油装置、多联产煤化工装备、合成橡胶及塑料生产装置。

2.冶金智能成套设备——集成开发具有特种参数在线检测、自适应控制、高精度运动控制等功能的金属冶炼、短流程连铸连轧、精整等成套装备。3.智能化成形和加工成套设备——集成开发基于机器人的自动化成形、加工、装配生产线及具有加工工艺参数自动检测、控制、优化功能的大型复合材料构件成形加工生产线。

4.自动化物流成套设备——集成开发基于计算智能与生产物流分层递阶设计、具有网络智能监控、动态优化、高效敏捷的智能制造物流设备。

5.建材制造成套设备——集成开发具有物料自动配送、设备状态远程跟踪和能耗优化控制功能的水泥成套设备、高端特种玻璃成套设备。

6.智能化食品制造生产线——集成开发具有在线成分检测、质量溯源、机电光液一体化控制等功能的食品加工成套装备。

7.智能化纺织成套装备——集成开发具有卷绕张力控制、半制品的单位重量、染化料的浓度、色差等物理、化学参数的检测仪器与控制设备,可实现物料自动配送和过程控制的化纤、纺纱、织造、染整、制成品等加工成套装备。

8.智能化印刷装备——集成开发具有墨色预置遥控、自动套准、在线检测、闭环自动跟踪调节等功能的数字化高速多色单张和卷筒料平版、凹版、柔版印刷装备、数字喷墨印刷设备、计算机直接制版设备(ctp)及高速多功能智能化印后加工装备。

四、六大重点应用示范推广领域1.电力领域——重点推进在百万千瓦级火电机组中实现燃烧优化、设备预测维护功能,在百万千瓦级核电站实现安全控制和特种测量功能,在重型燃气轮机中实现快速启停和复合控制功能,3mw以上风电机组的主控功能,变桨控制功能,太阳能热电站实现追日控制功能,在智能电网中实现用电管理、用户互动、电能质量改进、设备智能维护功能。

2.节能环保领域——重点推进在固体废弃物智能化分选装备、智能化除尘装备、污水处理装备上推广应用,实现各种再生原料的高效智能化分选、除尘设备和污水处理装备的自动调节与高效、稳定,在地热发电装备中实现地热高效发电建模与控制功能。

3.农业装备领域——重点推进在大型拖拉机及联合整地、精密播种、精密施肥、精准植保等配套机具成套机组,谷物、棉花、油菜、甘蔗等联合收获机械,水稻高速插秧机等种植机械装备上的应用,实现故障及作业性能的实时诊断、检测和控制,实现作业过程的智能控制和管理。

4.资源开采领域——重点推进在煤炭综采设备、矿山机械上应用,实现综采工作面设备信息与环境信息的集成监控、安全环境预警、精确人员定位等功能,在天然气长距离集输设备中实现全线数据采集和监控、运行参数优化、管道泄漏检测定位、站场无人操作或无人值守以及中心远程遥控功能,在油田设备中实现井口关键参数检测、数据处理及集中监测功能。5.国防军工领域——重点推进专用机器人、精密仪器仪表、新型传感器、智能工控机在航天、航空、舰船、兵器等国防军工领域的应用。

6.基础设施建设领域——重点推进在挖掘机、盾构机、起重机、装载机、叉车、混凝土机械等施工装备上应用,实现远程定位、监测、诊断、管理等智能功能,在机场和码头建设领域推广应用,实现机场行李和货物的自动装卸、输送、分拣、存取全过程的智能控制和管理,集装箱装卸的无人操作与数字化管理。(工业和信息化部装备工业司)。

智能制造汇报篇十

近年来,随着科技的迅猛发展,智能制造作为制造业的一种新模式,已经逐渐走向实施并广泛应用。作为一名在智能制造领域工作的从业者,我有幸参与了智能制造项目,并从中积累了一些心得体会。在这篇文章中,我将分享我对智能制造的理解和体会,希望能够对读者有所启发。

智能制造,顾名思义,就是通过智能化技术和方法,在制造过程中实现自动化、信息化和智能化的目标。智能制造的实施有很多好处,不仅能够提高生产效率,降低生产成本,还能够提高产品的质量和市场竞争力。同时,智能制造还可以帮助企业提升管理水平,增强供应链的整体效益,实现工业升级和可持续发展。

智能制造的应用领域非常广泛,涵盖了制造业的各个环节。例如,在生产过程中,通过引入机器人和自动化设备,可以实现工厂的柔性生产,提高生产效率和产品质量。在产品设计和研发阶段,利用云计算和大数据分析,可以更好地预测市场需求,并优化产品结构和设计。在供应链管理中,借助物联网和智能传感器,可以实现供应链的实时监控和数据共享,提高物流的效率和准确性。

智能制造的推广对企业和从业者都有积极的影响。对于企业而言,智能制造可以帮助企业提高生产效率和降低生产成本,从而提高企业的盈利能力。另外,智能制造还可以提升企业的技术水平和管理水平,增强企业的核心竞争力。对于从业者来说,智能制造带来了新的发展机遇,同时也对从业者的素质和技能提出了新的要求。只有不断更新知识和学习新技术,才能适应智能制造的发展需要。

第四段:智能制造面临的挑战和问题。

虽然智能制造有着广阔的前景,但也面临一些挑战和问题。首先,智能制造的推广需要大量的资金投入和技术支持,这对中小企业来说可能是一个难题。其次,智能制造涉及到大量的数据和信息的处理,如何保护和管理企业的数据安全成为一个重要的问题。此外,智能制造的推广还需要培养大量的技术人才,这也是一个长期而复杂的任务。

第五段:未来展望和思考。

面对智能制造的发展,我们应该积极拥抱变化,紧跟时代潮流。我们可以通过加强学习和提升自己的技术水平,适应智能制造的发展需要。同时,政府和企业也应该共同努力,加大对智能制造的投入和支持,为智能制造的推广创造良好的环境。只有我们共同努力,智能制造才能够在未来发展中发挥更大的作用,为经济的高质量发展提供强大的支撑。

总结部分:

智能制造作为制造业的未来发展方向,对于提升我国制造业的竞争力和实现工业转型升级具有重要意义。通过我自己的实践和体验,我深深地认识到智能制造的巨大潜力和机遇。同时,我们也要清醒地认识到智能制造所面临的挑战和问题,只有找到合适的解决方案,才能够顺利推进智能制造的发展。相信在未来,随着科技的不断进步和智能制造的不断推广,我们的生产方式和生活方式都将发生深刻变革。让我们共同努力,为智能制造的发展贡献自己的力量。

智能制造汇报篇十一

智能制造作为当前工业4.0的重要组成部分,对于制造企业来说至关重要。作为一名从事智能制造的技术人员,我在实践中不断摸索,不断总结,得到了一些心得体会。下面就与大家分享一下。

第一段:智能制造的背景和发展趋势。

随着网络技术、物联网技术等的发展,人类制造方式也开始进入智能制造时代。相对于传统的制造模式,智能制造具有自适应性、自学习性和自控制性等特点。尤其是在今天的强调“智能化”的潮流下,越来越多的公司开始探索智能制造的途径,这给制造业发展带来了全新的机遇。

智能制造最核心的技术之一是工业物联网技术。通过在生产设备中安装各种传感器,可以实时收集和传输设备状态、生产过程中的数据等信息,使企业的制造过程更为精准和有效。此外,云计算、人工智能、大数据等技术的不断发展也为智能制造提供了无限可能。

智能制造可以极大地提高企业的生产效率,缩短产品的生产周期,降低成本,提高质量,同时为了实现柔性生产、个性化生产等,智能制造也可以应用深度学习等技术,提高生产线灵活性。此外,智能制造技术也可以推动制造业朝着高端、高附加值的方向发展,使制造业不解产生一个新的历史性转折点。

第四段:智能制造面临的挑战和应对方法。

智能制造虽然发展前景良好,但是在实施过程中也面临诸如设备协同问题、标准制定等技术难题,以及用户需求多样、人才短缺、现有人力机械设备不能满足需求等生产要素问题。如何弥补人机短板,发掘现代化技术实验平台,提升智能制造良好度显得尤为重要。

未来,智能制造还将向着更智能、更数字化、更自适应的方向发展。受制造业电子化和网络化的深刻影响,企业经营模式将通过电子商务、物流、外包等方式进一步升级,智能制造将推动传统实体经济转型升级,形成新的经济增长点。

总之,在智能制造领域任职也要深入了解各种智能制造技术的特点,了解各种创新思路,对于未来的竞争也起到非常重要的作用。各位企业家都需要在日常所需的智能制造规划中面临关键挑战,机构将通过不断提升自己知识技术水平以及管理水平,一步又一步迈向更加优质、高效的时代。

智能制造汇报篇十二

班级:09级机电教育班姓名:丰云。

学号:200940914106。

课程论文题目:浅谈先进制造技术课程名称:评阅成绩:评阅意见:

成绩评定教师签名:日期:

先进制造技术amt是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。

当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。

先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。可基本归纳为以下四个方面:

一、先进的工程设计技术;

三、制造自动化技术;

四、先进生产管理技术、制造哲理与生产模式;

五、发展。

一、先进的工程设计技术。

先进的工程设计技术包括众多的现代设计理论与方法。包括cad、cae、capp、cat、pdm、模块化设计、dfx、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。

(1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。

(2)先进的工艺规程设计技术与生产技术准备手段。

在信息集成环境下,采用计算机辅助工艺规程设计、即capp,数控机床、工业机器人、三坐标测量机等各种计算机自动控制设备设备的计算机辅助工作程序设计即cam等。

(1)高效精密、超精密加工技术,包括精密、超精密磨削、车削,细微加工技术,纳米加工技术。超高速切削。精密加工一般指加工精度在10~0.1μm(相当于it5级精度和it5级以上精度),表面粗糙度ra值在0.1μm以下的加工方法,如金刚车、金刚镗、研磨、珩磨、超精研、砂带磨、镜面磨削和冷压加工等。用于精密机床、精密测量仪器等制造业中的关键零件加工,如精密丝杠、精密齿轮、精密蜗轮、精密导轨、精密滚动轴承等,在当前制造工业中占有极重要的地位。

超精密加工是指被加工零件的尺寸公差为0.1~0.01μm数量级,表面粗糙度ra值为0.001μm数量级的加工方法。

此外,精密加工与特种加工一般都是计算机控制的自动化加工。(2)精密成型制造技术,包括高效、精密、洁净铸造、锻造、冲压、焊接及热处理与表面处理技术。

(3)现代特种加工技术,包括高能束流(主要是激光束、以及电子束、离子束等)加工,电解加工与电火花(成型与线切割)加工、超声波加工、高压水加工等。电火花加工(electricaldischargemachining(edm)电火花加工electricsparkmachining)是指在一定介质中,通过工具电极和工件电极之间脉冲放电的电蚀作用对工件进行的加工。能对任何导电材料加工而不受被加工材料强度和硬度的限制。可分为电火花成型加工(edm)和电火花线切割加工(电火花线切割加工electricaldischargewire–cutting--edw)两大类。一般都采用cnc控制。

(4)快速成型制造(rpm).快速成形技术是在计算机控制下,基于离散堆积原理采用不同方法堆积材料最终完成零件的成型与制造的技术。从成型角度看,零件可视为“点”或“面”的叠加而成。从cad电子模型中离散得到点、面的几何信息,再与成型工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。

8)加工与设计之间的界限逐渐谈化,并趋向集成及一体化;

9)工艺技术与信息技术、管理技术紧密结合,先进制造生产模式获得不断发展。

三、制造自动化技术。

一句话:计算机控制自动化技术。

(1)数控技术与数控机床;数控加工技术是为了实现机床控制自动化要求而发展的。它是指用代码化的数字、字母及符号表示加工要求、零件尺寸及其参数、加工步骤等,通过控制介质,输入到控制装置,经过微机进行处理与计算,发出各种控制信号与数据,使机床各部件自动协调运动,实现自动加工的技术。采用数控加工技术的机床,称为数控机床。数控加工的主要特点是:加工的零件精度高;生产效率高;特别适合加工形状复杂的轮廓表面;有利于实现计算机辅助制造;对操作者(不含编程人员)技术水平的要求相对较低;初始投资大、加工成本高。此外,数控机床是技术密集型的机电一体化产品,数控加工技术的复杂性和综合性加大了维修工作的难度,需要配备素质较高的维修人员和维修设备。

(2)工业机器人(用于物流与加工)及物流设备;工业机器人是一种可编程的智能型自动化设备,是应用计算机进行控制的替代人进行工作的高度自动化系统。最近,联合国标准化组织采用的机器人的定义是:“一种可以反复编程的多功能的、用来搬运材料、零件、工具的操作机”。在无人参与的情况下,工业机器人可以自动按不同轨迹、不同运动方式完成规定动作和各种任务。机器人和机械手的主要区别是:机械手是没有自主能力,不可重复编程,只能完成定位点不变的简单的重复动作;机器人是由计算机控制的,可重复编程,能完成任意定位的复杂运动。

(3)柔性制造系统(fmc,fms,fml):包括加工设备(cnc机床)、检测设备、物料输送(工业机器人、自动交换托盘(apc)、自动输送台车(rgv、agv)等)。

(4)计算机集成制造(cim)和工厂自动化(fa)。计算机集成制造系统(cims)是由计算机管理系统、计算机辅助设计与制造cad/cam以及柔性制造系统fms(还可能有其他生产单元)组成。cims是产品生产过程的各子系统的完美集成,即把工程设计、生产制造、市场分析和其他支持功能合理地通过计算机网络有机地集合成一个整体,以实现生产的柔性化、优化、自动化和集成化,达到高效率、高质量、低成本而灵活生产的目的。

四、先进生产管理技术、制造哲理与生产模式。

包括先进制造生产模式、集成管理技术和生产组织方法等。以计算机辅助生产管理为核心,研究和应用先进的生产管理系统和技术。包括成组技术、全面质量管理、精益生产与jit、敏捷制造、并行工程、柔性制造、计算机集成制造、虚拟制造、智能制造、网络化制造、绿色制造、生物制造、可重构制造、mrp、mrpii、erp、scm、crm、计算机辅助后勤支援(computeraidedlogisticsupport,cals)、电子商务、知识管理。

五、发展。

1、信息技术对先进制造技术的发展起着越来越重要的作用。

2、设计技术不断现代化。

产品设计是制造业的灵魂。现代设计技术的主要发展趋势是:(1)设计手段的计算机化在实现了计算机计算、绘图的基础上,当前突出反映在数值仿真或虚拟现实技术在设计中的应用,以及现代产品建模理论的发展上,并且向智能化设计方向发展。

(2)新的设计思想和方法不断出现(3)向全寿命周期设计发展。

(4)设计过程由单纯考虑技术因素转向综合考虑技术、经济和社会因素设计不只是单纯追求某项性能指标的先进和高低、而是注意考虑市场、价格、安全、美学、资源、环境等方面的影响。

3、成形及改进制造技术向精密、精确、少能耗、无污染方向发展。

成形制造技术是铸造、塑性加工、连接、粉末冶金等单元技术的总称。

4、加工制造技术向着超精密、超高速以及发展新一代制造装备的方向发展。

5、工艺由技艺发展为工程科学,工艺模拟技术得到迅速发展。

先进制造技术的一个重要发展趋势是,工艺设计由经验判断走向定量分析,加工工艺由技艺发展为工程科学。

6、专业、学科间的界限逐渐淡化、消失。

7、绿色制造将成为21世纪制造业的重要特征。

日趋严格的环境与资源的约束,使绿色制造业显得越来越重要,它将是21世纪制造业的重要特征,与此相应,绿色制造技术也将获得快速的发展。主要体现在:

(1)绿色产品设计技术使产品在生命周期符合环保、人类健康、能耗低、资源利用率高的要求。

(2)绿色制造技术在整个制造过程,使得对环境负面影响最小,废弃物和有害物质的排放最小,资源利用效率最高。绿色制造技术主要包含了绿色资源、绿色生产过程和绿色产品三方面的内容。

(3)产品的回收和循环再制造例如,汽车等产品的拆卸和回收技术,以及生态工厂的循环式制造技术。它主要包括生产系统工厂--致力于产品设计和材料处理、加工及装配等阶段,恢复系统工厂--主要对产品(材料使用)生命周期结束时的材料处理循环。

8、虚拟现实技术在制造业中获得越来越多的应用虚拟现实技术(virtualrealitytechnology)主要包括虚拟制造技术和虚拟企业两个部分。

9、信息技术、管理技术与工艺技术紧密结合,先进制造生产模式获得不断发展,造业在经历了少品种小批量--少品种大批量、--多品种小批量生产模式的过渡后,70年代、80年代开始采用计算机集成制造系统(cims)进行制造的柔性生产的模式,并逐步向智能制造技术(imt)和智能制造系统(ims)的方向发展。精益生产(lp)、灵捷制造(am)等先进制造模式相继出现,预计21世纪初,先进制造模式必将获得不断发展。

智能制造汇报篇十三

第一段:引言(200字)。

智能制造是当今工业界的热门话题,其通过融合人工智能、大数据、物联网等新兴技术来实现生产过程的自动化和智能化。在我与智能制造相关的实践中,我深刻感受到这项技术的潜力和价值。本文旨在分享我对智能制造的体会和见解。

第二段:智能制造的优势(200字)。

智能制造的最大优势是提高生产效率和降低成本。通过采用自动化设备、数据分析和预测技术,企业能够更好地规划和管理生产流程,减少人为错误以及生产停顿。此外,智能制造还能提供实时数据和分析,帮助企业做出更明智的决策,优化资源利用,提高产品质量。

第三段:智能制造的挑战(200字)。

然而,智能制造的实施也面临着一些挑战。首先,人们对于新技术的接受和适应需要时间。在企业中推行智能制造需要员工重新学习和调整工作方式,这可能会引起一定的阻力和困惑。其次,智能制造的实施需要高投资成本,企业可能面临经济和资源的压力。最后,新技术本身的安全性和稳定性也是个悬念。确保数据安全和系统运行稳定需要企业加强技术保护和风险管理。

第四段:智能制造的应用案例(300字)。

尽管智能制造面临一些挑战,但仍有许多企业成功应用该技术取得了显著成绩。例如,某汽车制造商采用了智能制造技术来优化生产线的安排,使得生产能力提高了15%。一家食品加工企业通过智能制造成功地降低了原材料浪费和产品次品率,使得利润增长了20%。这些成功案例表明智能制造将是未来产业发展的趋势之一,对企业的竞争力具有重要意义。

第五段:个人感悟与未来展望(300字)。

通过与智能制造相关的实践,我深刻体会到其在提升效率、优化资源利用和提高产品质量方面的巨大潜力。同时,我也认识到实施智能制造是一个复杂而持续的过程,需要企业在技术、管理和人才培养等方面做出全面投入。在未来,我希望能够继续关注智能制造领域的发展,并为企业实施智能制造提供专业支持和建议。

结语(100字)。

智能制造是一个日益重要的产业发展方向,其将为企业带来巨大的竞争优势。尽管面临一些挑战,但通过充分认识其优势和案例,加强对新技术的研究和培训,企业可以成功实施智能制造,实现更高的生产效率和质量水平。我相信通过不断的努力和创新,智能制造必将为工业界带来更大的发展和进步。

智能制造汇报篇十四

智能制造是近年来逐渐兴起的一种新型制造方式,它通过用智能化技术赋予生产设备、操作工序及制造流程以智能,实现生产线的自动化、数字化和智能化,从而提高生产效率和产品质量,并降低制造成本。下面是我对智能制造的一些心得体会。

智能制造是制造业的未来发展方向。随着人工智能、物联网、云计算等新技术的出现,传统制造业正在逐渐的向智能化转型,实现人机协作、自动化生产和高效率生产。智能制造改变了传统的生产方式,将人力资源从重复的劳动中解放出来,强化了生产效率和产品的可控性和可预测性,优化了生产过程,提高了收益,加快了企业的发展步伐。因此,智能制造是一个可以带来真正意义的意义上的改革。

传统制造方式需要一系列的人工干预,而且存在一定的机会和风险,过程管理和控制体系不够完整。而智能制造则采用一系列的自动化系统和智能化技术,能够实现智能化的生产和制造,从而大大优化了生产流程的效率和系统管理能力,提高了生产质量和产品竞争力。同时,智能制造的生产过程具有协作性,可以更好地支持集成化和可持续性发展,并增强了企业的品牌价值和市场影响力。因此,智能制造是技术越来越先进的一种制造方式。

智能制造以信息化为基础,通过一系列技术的应用实现生产的智能化。智能制造能够减少不必要的重复材料、产品和能源的浪费,通过精确的数据管理和数据挖掘等技术实现节能减排,在生产环境中进行合理的能源利用和灵活的排放控制,从而有效地降低企业的能源消耗量,降低了环境污染和对资源的过度消耗,同时也降低了企业的成本,在取得经济效益的同时很好地实现可持续发展。

智能制造能够实现生产产线的自动化、数字化和智能化,也可以让普通人通过自动化生产线、数据管理和监控系统等技术与生产过程进行交互,使人机协作和业务关联更加紧密,并将用户需求与生产能力及时衔接。这样的操作过程使智能制造的效率更高、更快速,然而不仅如此,它的生产过程也更加透明,公司更便于掌控生产进度和质量风险,更灵活地规划方案并对生产过程进行设计和优化。智能制造可以改造传统生产方式中的许多问题,并将生产的质量、效率、能源利用、环境影响以及可持续性发展等问题纳入考虑范围之内。

随着国家政策的不断推进和新技术的迅猛发展,智能制造迎来了发展的新时代。国内市场的增长推动着制造业的整体持续发展,同时智能制造的技术也在不断更新,实现更为精准的数据管理和数据挖掘,以及更智能的生产过程的优化和提升。随着工业4.0、人工智能、大数据、物联网等新技术的不断发展,智能制造发展前景广阔,因此我们也应该充分利用和善用这些新技术,迎接未来的智能制造。

总而言之,智能制造是现代制造业的重要产物,也是未来发展的重要方向之一。它通过自动化、数字化和智能化等技术的应用,实现了生产流程的高效化、生产效率的提高、资源的平衡利用、环境的保护和可持续发展。我们应该充分认识智能制造的重要性,积极学习并掌握相关技术,为推动智能制造发展做出我们自己的贡献。

智能制造汇报篇十五

川智能化制造技术以实现优质、高效、低耗、清洁、灵活生产,提高产品对动态多变市场的适应能力和竞争力为目标。

(2)智能化制造技术不局限于制造工艺,而是覆盖了市场分析、生产管理、加工和装配、销售、维修、服务,以及回收再生的全过程。

(3)智能化制造强调技术、人、管理和信息的四维集成,不仅涉及到物质流和能量流,还涉及到信息流和知识流,即四维集成和四流交汇是智能化制造技术的重要特点:。

(4)智能化制造技术更加重视制造过程组成和管理的合理化以及革新,它是硬件、软件、智能(人)与组织的系统集成。

机械制造设备的智能化、网络化、以及对神经元网络、云计算技术的研究与应用,使机械制造工)‘智能化技术得到了跨越式的发展,可以说这是又一次具有划时代意义的工业技术革命。目前,智能化制造数控设备的关键技术,除了机械主体以外,主要是由智能数控系统技术、智能感知技术、智能自适应技术、智能神经元网络技术、智能云计算技术和智能专家系统等主要技术构成。

(1智能化数控系统数控设备智能化的发。

展是以数控系统完善的软硬件功能及高灵敏度、高精度感知检测系统为基础,以适应智能化、信息化、数字化集成技术发展的要求。为追求数控设备加工效率和加工质量,数控系统不但有自动编程、前馈控制、模糊控制、自学习控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等智能化功能,并有故障诊断专家系统,使自诊断和故障监控功能更趋势完善。伺服驱动系统智能化,能自动感知负载变化,自动优化调整参数。如发那科推出的hrv控制,通过共振追随型hrv滤波器,可以避免因频率变动而造成设备的共振。通过融合旋转伺服电动机,高精度、高响应和高分辨率脉冲编码器,实现高速和高精度的伺服控制,保证极其平稳的进刀。

(2)智能自适应控制技术自适应控制分为工艺自适应和儿何自适应。工艺自适应又分为。

(ann)是一种模拟。

除了各种数控设备和相关数控配套设备以外,智能工业机器人在智能制造单元、智能制造系统和智能制造工)‘中具有重要作用。

(2)智能化自动化工)‘在各种智能化自动化数控设备的基础上,智能化工)‘将由工厂‘局部智能自动化、逐步分层次地发展到全工)‘智能自动化和社会化智能制造。

第一层次:单机或单元智能自动化。

单机或单元智能自动化,可以实现长时间无人值守。国内外都有用于生产的实例。

第二个层次:生产制造系统智能自动化。

在第三代“智能机器人化单元”的基础上,实现计算机网络控制生产车间全自动化系统。包括毛坯仓储管理,再制品仓储管理,成品零件仓储管理及其搬运、装卸、装配作业和质量检验等。

第三个层次:智能化数字化网络制造系统。

在第二层次生产制造系统智能自动化的基础上,配置网络综合管理系统,来实现全工)‘的智能化数字化网络制造。智能化工)‘的实现主要是靠信息通信技术(ict)和智能网络的可靠运行加以保证。具有实时资料搜集与传输功能、高效能计算机与分析预测功能、远程监控与诊断功能及模拟功能等。智能化工)‘最核心的部分是生产过程和全面经营运行的智能自动化,包括设计智能化,生产排序自动化,生产线自动化,测试检验自动化,仓储自动化,电力管理智能自动化等等,进一步发展到自动化无人化工)‘(绝大多数设备可以无人值守)。

第四个层次:智能化社会化生产。

智能化网络化社会化制造,将山企业内部局域网经因特网向企业外部传输。这就是所谓的internet/intranet。网络可使企业与企业之间进行跨地区协同设计、协同制造、信息共享、远程监控、远程诊断和服务等。网络能为制造提供完整的生产数据信息,可以通过网络将加工程序传给远方的设备进行加工,也可远程诊断并发出指令调整。网络使各地分散的数控机床联系在一起,互相协调,统一优化调整,使产品加工不局限于一个工)‘内而实现社会化生产。智能化社会化制造能够借助internet网实现跨行业、跨国际智能化制造,进人internet/intranet时代。云计算借助internet网整合了计算机资源,为智能化制造开了先河。智能化网络化社会化制造将引领社会和全球资源的整合与优化运用,同时将有效地提高人类的生活质量,逐步地减少人类的体力劳动而扩大脑力劳动的比重,进入知识社会,智能社会。

智能制造具有高科技高水平的先进制造系统,面临一些极具挑战性的问题。当然也需要我们投入大量的研究去攻克这些技术难题。产品和制造过程的数字建模理论及混合约束求解方法,几何表示与推理在运动规划、抓取、夹持、装配、nc加工、计算机视觉、测量中的应用,制造技能和制造知识的表示、获取与推理。智能制造单元的agent建模及智能制造系统的多agent建模理论、多agent系统学-j及重构理论、多agent系统动力学分析方法及性能评价标、多agent系统规划、调度、控制与协调等。制造资源的holon模型holonic系统组成及其分别式协调与控制等。由于人类智能问题本身的复杂性,智能制造理论与技术的研究任重而道远,上述问题的深入研究,不仅将促进智能制造理论与技术的发展与进一步完展具有积极的推动作用。不仅要提高机器设备的智商,更要协调好人与机器的关系,建立一种新型的人机一体化关系,从而产生高效高性能的生产系统。总之,随着智能制造技术的普及以及其带来的优势愈发明显,可以预见在不远的将来,智能制造将成为下一代重要的生产模式。参考文献:

智能制造汇报篇十六

当前,以智能制造为代表的新一轮产业变革迅猛发展,数字化、网络化、智能化日益成为制造业的主要趋势。为加速我国制造业转型升级、提质增效,国务院发布实施《中国制造2025》,将智能制造作为主攻方向,加速培育我国新的经济增长动力,抢占新一轮产业竞争制高点。目前,我国制造业机械化、电气化、自动化、信息化并存,不同地区、不同行业、不同企业发展不平衡,发展智能制造面临关键技术装备受制于人、智能制造标准/软件/网络/信息安全基础薄弱、智能制造新模式推广尚未起步、智能化集成应用缓慢等突出问题。因此,作为一项必须长期坚持的战略任务,推动我国制造业智能转型,环境更复杂、形势更严峻、任务更艰巨。《智能制造工程实施指南(2016一2020年)》明确“十三五”期间同步实施数字化制造普及、智能化制造示范。按照专项行动确定的连续实施三年,2016年要边试点示范、边总结经验、边推广应用的总体安排,继续组织开展智能制造试点示范专项行动。实施智能制造试点示范专项行动,是落实《中国制造2025》以及智能制造工程的重要措施,对于实现制造强国目标具有重要意义。

二、总体思路。

贯彻落实《中国制造2025》,推进《智能制造工程实施指南(2016一2020年)》计划实施,在总结2015年专项行动经验的基础上,2016年将继续坚持“立足国情、统筹规划、分类施策、分步实施”的方针,进一步扩大行业和区域覆盖面,全面启动传统制造业智能化改造,开展离散型智能制造、流程型智能制造、网络协同制造、大规模个性化定制、远程运维服务5种智能制造新模式的试点示范,继续注重发挥企业积极性、注重智能化持续增长、注重关键技术装备安全可控、注重基础与环境培育,逐步探索与实践有效的经验和模式,不断丰富成熟后在制造业各领域全面推广。

三、主要目标。

2016年,在符合两化融合管理体系标准的企业中,在有条件、有基础的重点地区、行业,特别是新型工业化产业示范基地中,遴选60个以上智能制造试点示范项目。通过试点示范,进一步提升高档数控机床与工业机器人、增材制造装备、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备五大关键技术装备自主化能力,以及智能制造标准、核心软件和工业互联网创新应用能力,形成关键领域一批智能制造标准,不断形成并推广智能制造新模式。智能车间/工厂试点示范项目通过2一3年持续提升,实现运营成本降低20%,产品研制周期缩短20%,生产效率提高20%,产品不良品率降低10%,能源利用率提高10%。

四、重点行动。

范,推进数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等试点应用,推动企业全业务流程智能化整合。

(二)流程型智能制造试点示范。

在石油开采、石化化工、钢铁、有色金属、稀土材料、建材、纺织、民爆、食品、医药、造纸等流程制造领域,开展智能工厂的集成创新与应用示范,提升企业在资源配置、工艺优化、过程控制、产业链管理、质量控制与溯源、能源需求侧管理、节能减排及安全生产等方面的智能化水平。

(三)网络协同制造试点示范。

在机械、航空、航天、船舶、汽车、轨道交通设备、家用电器、集成电路、信息通信产品等领域,选择有条件的企业,利用工业互联网网络等技术,建设网络化制造资源协同平台,集成企业间研发系统、信息系统、运营管理系统,推动创新资源、生产能力、市场需求的跨企业集聚与对接,实现设计、供应、制造和服务等环节的并行组织和协同优化。

(四)大规模个性化定制试点示范。

在石化化工、钢铁、有色金属、建材、汽车、纺织、服装、家用电器、家居、数字视听产品等领域,利用工业云计算、工业大数据、工业互联网标识解析等技术,建设用户个性化需求信息平台和个性化定制服务平台,实现研发设计、计划排产、柔性制造、物流配送和售后服务的数据采集与分析,提高企业快速、低成本满足用户个性化需求的能力。

(五)远程运维服务试点示范。

在石化化工、钢铁、建材、机械、航空、家用电器、家居、医疗设备、信息通信产品、数字视听产品等领域,集成应用工业大数据分析、智能化软件、工业互联网联网、工业互联网ipv6地址等技术,建设产品全生命周期管理平台,开展智能装备(产品)远程操控、健康状况监测、虚拟设备维护方案制定与执行、最优使用方案推送、创新应用开放等服务试点。

五、重点工作及进度安排。

(一)制定2016年智能制造试点示范项目要素条件。

2016年2一3月,组织开展试点示范项目要素条件调研,编制《智能制造试点示范项目要素条件》;4月底前,下发《关于开展2016年智能制造试点示范项目推荐的通知》。

5月底前,在各地工业和信息化主管部门推荐的项目中组织行业专家遴选;6月底前,确定60个以上智能制造试点示范项目,其中:选择20个以上离散型智能制造试点示范项目,选择20个以上流程型智能制造试点示范项目,选择20个以上网络协同制造、大规模个性化定制、远程运维服务试点示范项目。

(三)完成智能制造发展对策研究。

2016年6月底前,组织相关单位完成“智能制造发展对策研究”重大软科学课题,进一步完善促进智能制造发展的相关政策。

(四)启动并组织实施重点领域智能化改造工作2016年2一12月,利用工业转型升级资金、专项建设基金,在石油化工、化工园区、钢铁、有色金属、稀土材料、建材、船舶、航空、汽车、电力装备、机床、纺织、食品、医药、轻工、消费类电子、新型显示高世代线、太阳能电池及光伏组件、民爆等行业,持续开展重点企业关键环节、生产线、车间、工厂的智能化改造,培育一批系统解决方案供应商,形成智能化标准与模式并进行复制推广。

(五)开展工业互联网产业推进工作。

2016年2一12月,组织企业在工业以太网、工厂无线应用、标识解析、ipv6应用、工业云计算、工业大数据等领域开展创新应用示范,支持相关单位开展工业互联网试验验证平台、工业互联网关键资源管理平台和工业互联网商用流转数据管理平台建设。

(六)开展智能制造网络安全保障能力建设。

2016年6月底前,完成工业互联网安全监测平台、工控网络安全防御平台、工业控制系统仿真测试与验证平台等项目立项论证;12月底前开展关键技术预先研究。

(七)开展智能制造标准体系建设。

2016年5月,召开中德智能制造/工业4.0标准化高端论坛;11月底前完成智能制造标准试验验证项目的立项工作,下达智能制造标准编制立项,形成10项以上重点标准草案。

(八)开展智能制造经验交流与推广工作。

2016年9月底前,组织召开2016年全国智能制造试点示范经验交流电视电话会议;10一12月,组织开展原材料、装备、消费品、电子、民爆行业典型案例经验交流与模式推广;12月底前,编制完成《智能制造探索与实践一一2016年试点示范项目汇编》。

(九)组织智能制造试点示范项目集中展示业博览会上设专区,集中展示智能制造试点示范项目取得的成果。

(十)开展专项行动评估与总结。

2016年11月,完成专项行动检查与效果评估,完成专项行动工作总结。

六、保障措施。

智能制造汇报篇十七

对生产管理部门的要求:

1、根据生产线表的要求,要详细、准确地编制《船舶生产技术准备综合日程表》,包括设备纳期表、设计出图计划等,并进行跟踪、调度、检查、考核。生产技术准备是船厂组织船舶建造重要的管理体系,在调度为主要管理手段时期,围绕出图、供货、配套等项目常常纠缠不清,牵扯了生产管理者极大的精力。目前各船厂生产技术准备状况已有了很大改观:一是建立了拉动式需求计划管理体系;二是将各船只生产技术准备的职责落实到项目组;三是应用了信息技术:设计出图进度及状况、物资订货及到货情况、集配件的需求、缺损件的补充等都在网上传输并设有予警提示。

2、根据现代造船“设计、生产、管理一体化”的要求,从合同签约开始生产管理部门就应参与设计工作,如依据影响船厂生产率相关的制约因素和条件,提出分段划分意见等,供设绘各布置图参用。在船舶设计过程中,按造船管理规程的要求,将分阶段召开a、b、c、d等会议,其目的都是以合理和方便施工为宗旨,将管理要求和设计意图融合起来。为此,在合同生效三个月内,生产管理部门要编制出《建造方针》,该方针是指导船舶建造的纲领性文件,主要内容有:(1)合同概要。

(2)建造船舶的主要技术参数和主要物量。

(3)建造方法。包括分段划分原则;重要分段的结构特征及尺寸;分段重量的控制范围;钢板规格控制;总段装配范围;上层建筑整体吊装的重量计算;分段予舾装范围和要求;场地分配及面积计算;船台建造方法和定位分段的确定等。(4)新工艺新技术的应用和实施范围及要求。(5)船舶建造主要建造计划线表。(6)质量、成本、资金等管理要求。

建造方针完成之后,船厂还要编制出《施工要领》,主要说明基本的工艺步骤、技术要点和基本的施工方法。策划合理、内容规范,并体现出很高的施工要求,如开展予舾装:“除合拢缝处的货舱区的铁舾、管系焊接件外,其它所有均应在分段阶段安装”。

3、为了在船舶建造过程中贯彻建造方针,避免流于形式缺乏约束,近年来主要船厂相继开展了一项叫做“纸上模拟造船”的活动,取得了应有的成效:在船舶开工前,船厂组织设计、工艺、生产及生产管理等主管人员,对照设计说明书,从剖析的角度,按船舶建造流程逐项找出影响设计建造的关键点,从合理性可行性出发,研究确定建造方法和技术手段,也就是说研究确定了对关键项目的予案。从实践情况看,如果“纸上模拟造船”能够走得通,并将具体要求落实在《建造方针》中,基本上扫除了建造中将遇到技术障碍和施工难点。

五、船舶建造过程的控制。

(一)钢料加工阶段。

钢料加工过程:钢材备料——钢材予处理线(矫平、喷砂除锈、底漆)——放样号料——构件边缘加工(切割、加工焊接坡口)——构件成型加工(非平直构件加工成应有曲度)——船体零部件装配(平面接板、框架组立)。应关注的问题:

1、钢料供应。船厂是钢材消耗大户,从产业关系看应该与钢厂建立利益共享的战略伙伴关系。目前大船重工已与鞍钢签定了长期合作协议,每年锁定一个钢材基价,既减少了受钢材市场价格波动影响,并能够保证供货期限和数量;有的船厂享有钢材优惠价格(如每吨下浮50元);还有的钢厂直接投资船厂成为股东单位(外高桥有限公司、大船重工钢加配送中心)。

2、钢料加工应形成分道加工的路径。大型船厂为组织分段组装流水线生产,在钢料加工阶段就要求相应加工后的构件定向、有序地传输到平面分段流水线、曲面分段流水线和型材加工流水线。在大连船务钢料加工车间:平直构件加工、带曲度构件加工压制、型材加工及弯制、构件小组立等,已形成划分明确的加工区域。

(2)在钢料加工中心留有充分的余料堆放、分检、再利用场地,一是可调用余料进行二次套料;二是利用余料切割法兰、肘板、人孔盖等予制件;三是调用余料补充工装。(3)尽可能根据用料尺寸,多规格在钢厂组织定尺订货(这是日本船厂保持高水平利用率的优势)。

(二)分段制作阶段。

1、分段是构成船体结构的实体。根据船舶建造工艺、场地条件、起重能力、周期要求等,一艘3—6万吨级船舶分段划分大致在100—200个(大型船体结构如mpf1000钻井储油船分段划分351个)。

2、分段名称。

分段按几何特征可分为:

(1)平面分段:平面板列带有骨架的单层平面板架;

(2)曲面分段:平面板列带有骨架的单层曲面板架;

(3)半立体分段:两层或两层以上板架所组成的不封闭分段;

(4)立体分段:两层或两层以上板架所组成的封闭分段;

(5)总段:主船体沿船长划分,其深度和宽度等于该处船深和船宽的环形分段。特别需要指出的是:立体分段和总段是由若干平面分段和曲面分段所组成,由于平面分段和曲面分段是分段建造中的基本单位,作为船舶建造主流程,必须组织流水线生产。分段按其结构所属部位可分为:

(1)底部分段(2)舷侧分段(3)甲板分段(4)首尾分段(5)上层建筑等。

3、分段制作阶段建造组织措施:

(1)严格按批量顺序下料:

船体结构分段一般分20多个批次进行投料。在网络计划安排中按吊装顺序依次组织分段制作,这是由建造法决定的。塔式建造法:

以尾部近机舱前的一个底部分段作为基准段在船台搭载,然后向首、尾及两舷自下而上依序吊装各分段。由于机舱分段需要安装大量设备、管路,所以需要尽早成型并吊装。岛式建造法:

为缩短建造周期,将船体沿船长划分成2—3个建造区(岛),在每个建造区选择一个分段为基准段,按塔式建造法组织建造,岛与岛之间利用“嵌补分段”进行连接。串联建造法(一条半造船法):

当船台长度大于船长1.5倍,且是批量建造情况下,可以在建造第一艘船的前半段的同时,在船台的前端建造第二艘船的尾段。待第一艘船下水后,第二艘船的尾段也完工,并移至船台尾端继续建造其前半段,同时第三艘船的尾段又在船台的前端建造。总段建造法:

将预先装配焊接好的环形总段按照安装顺序进行船台装配。船厂在具有大型船坞、并有总组场地和起重能力予以保证情况下,采用总段建造法可以有效利用各主要生产资源。(2)贯彻总装造船原则:

为充分发挥船厂主要生产设施(船台、船坞、总组场地和起重设备等)能力,应将生产主流程即组织流水线生产的项目留在厂内,能够以中间产品组织生产和供应的次流程项目,尽可能以“分包”形式扩散到厂外,实行“专业化生产、社会化配套”。“分包”指的是购买劳务,由船厂提供材料、图纸、进行工艺和质量监督,分包商提供加工后的中间产品,这些产品船厂不是不能制造,而是出于经济、负荷特别是总体效率等原因,主动将其交给分包商去制造。

(3)执行分段成品化交验:

智能制造汇报篇十八

专业班级机械设计制造及其自动化指导教师。

完成日期2017/10/20

目录。

一、概述。

二、人工智能技术的国内外发展现状与趋势。

三、人工智能技术的主要研究内容与核心技术难题。

四、人工智能技术的评价与认识。

五、结论。

六、参考文献。

一、概述。

先进制造技术(advancedmanufacturingtechnique,缩写amt,具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。

先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。而先进制造技术主要包括以下三个技术群:(1)主体技术群:是制造技术的核心,它包括两个基本部分:有关产品设计技术和工艺技术。

(2)支撑技术群:a.信息技术:接口和通信、数据库技术、集成框架、软件工程人工智能、专家系统和神经网络、决策支持系统。b.标准和框架:数据标准、产品定义标准、工艺标准、检验标准、接口框架。c.机床和工具技术。d.传感器和控制技术:单机加工单元和过程的控制、执行机构、传感器和传感器组合、生产作业计划。e.其它;(3)制造技术基础设施.要素包括了车间工人、工程技术人员和管理人员在各种先进生产技术和方案方面的培训和教育等。

先进制造技术是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。先进制造技术是当今国际间科技竞争的焦点,随着社会的发展,市场需求的个性化与多元化,人们对产品的要求也日益多元化,市场竞争日趋激烈,企业要在日趋激烈的市场竞争中生存发展,就必须采用先进的制造技术。

二、人工智能技术的国内外发展现状与趋势。

人工智能技术简介。

人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(artificialintelligence)一词最初是在1956年dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现至今,已经出现了许多ai程序,并且它们也影响到了其它技术的发展。人工智能(artificialintelligence),英文缩写为ai。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。ibm公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。

当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。例如,1997年5月,ibm公司研制的深蓝(deepblue)计算机战胜了国际象棋大师卡斯帕洛夫(kasparov)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。

著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

应用领域:智能控制,机器人学,语言和图像理解,遗传编程,机器人工厂,安全问题。目前人工智能还在研究中,但有学者认为让计算机拥有智商是很危险的,它可能会反抗人类。人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊科学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

人工智能技术在国内的发展与趋势。

占有率上。随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,因而我国非常重视对先进制造技术的研究。制造业是我国国民经济和综合国力的重要支柱产业,其先进生产总值占国民生产总值(gdp)的40%左右。尤其,中国近几年来房地产业的崛起,带动了三一重工、中联重科、徐工等一批工程机械企业的发展,而这些企业的发展的同时又带动了先进制造技术的发展,然而虽然我们在先进制造技术方面取得了很多卓越的成绩,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。主要体现在以下几个方面:

管理方面:工业发达国家广泛采用计算机管理,重视组织和管理体制、生产模式的更新发展,推出了准时生产(jit)、敏捷制造(am)、精益生产(lp)、并行工程(ce)等新的管理思想和技术。我国只有少数大型企业局部采用了计算机辅助管理,多数小型企业仍处于经验管理阶段。

制造工艺方面:工业发达国家较广泛的采用高精密加工、精细加工、微细加工、微型机械和微米/纳米技术、激光加工技术、电磁加工技术、超塑加工技术以及复合加工技术等新型加工方法。我国普及率不高,尚在开发、掌握之中。

设计方面:工业发达国家不断更新设计数据和准则,采用新的设计方法,广泛采用计算机辅助设计技术(cad/cam),大型企业开始无图纸的设计和生产。我国采用cad/cam技术的比例较低。

自动化技术方面:工业发达国家普遍采用数控机床、加工中心及柔性制造单元(fmc)、柔性制造系统(fms)、计算机集成制造系统(cims),实现了柔性自动化、知识智能化、集成化。我国尚处在单机自动化、刚性自动化阶段,柔性制造单元和系统仅在少数企业使用。

产品结构方面:中国机械制造业的快速发展,主要依靠技术引进和赶超型发展战略,加之中国劳动力丰富而资金相对短缺,致使机械制造业的科技开发明显滞后。虽然中国机械制造业的产品数量已经位居世界前列,但主要是劳动密集型产品,具有自主知识产权的高、精、尖产品比较少。比如数控机床和精密机床的可靠性差、质量问题严重,轴承、液压件、密封件等基础件产品水平低、品种少、满足度低、质量不稳定。

人工智能技术的发展趋势表现在:

全球化:一方面由于国际和国内市场上的竞争越来越激烈,例如在机械制造业中,国内外已有不少企业,甚至是知名度很高的企业,在这种无情的竞争中纷纷落败,有的倒闭,有的被兼并。不少暂时还在国内市场上占有份额的企业,不得不扩展新的市场;另一方面,网络通讯技术的快速发展推动企业向着既竞争又合作的方向发展,这种发展进一步激化了国际间市场的竞争。这两个原因的相互作用,已成为全球化制造业发展的动力,全球化制造的第一个技术基础是网络化,网络通讯技术使制造的全球化得以实现。网络化:网络通讯技术的迅速发展和普及,给企业的生产和经营活动带来了革命性的变革。产品设计、物料选择、零件制造、市场开拓与产品销售都可以异地或跨越国界进行。此外,网络通讯技术的快速发展,加速技术信息的交流、加强产品开发的合作和经营管理的学习,推动了企业向着既竞争又合作的方向发展。

品工艺的合理性,保证产品制造的成功和生产周期,发现设计、生产中不可避免的缺陷和错误。

自动化:自动化是一个动态概念,目前它的研究主要表现在制造系统中的集成技术和系统技术、人机一体化制造系统、制造单元技术、制造过程的计划和调度、柔性制造技术和适应现化生产模式的制造环境等方面。制造自动化技术的发展趋势是制造全球化、制造敏捷化、制造网络化、制造虚拟化、制造智能化和制造绿色化。

绿色化:绿色制造则通过绿色生产过程、绿色设计、绿色材料、绿色设备、绿色工艺、绿色包装、绿色管理等生产出绿色产品,产品使用完以后再通过绿色处理后加以回收利用。采用绿色制造能最大限度地减少制造对环境的负面影响,同时使原材料和能源的利用效率达到最高。精密化:现代高新技术产品需要高精度制造,社会的发展对机械产品的质量提出了越来越高的要求。这决定了发展精密加工、超精密加工技术是机械制造未来的一个重点智能化:智能制造是指综合利用各个学科、各种先进技术和方法,解决和处理制造系统中的各种问题。系统能领会设计人员的意图,能够检测失误,回答问题,提出建议方案等。

快速化:快速化是指对市场的快速响应,对生产的快速重组。它要求生产模式有高度的柔性与高度敏捷性。快速化能强有力地推动着制造技术的进步与发展,它是先进制造技术发展的“动力”。

集成化:现代制造业的方向并不只是计算机的集成,信息的集成,而是人、技术、组织的整体集成,包括功能集成、组织集成、信息集成、过程集成、知识集成和企业间的集成。

人工智能技术在国外的发展与趋势。

智能是一种知识与思维的合成,是人类认识世界和改造世界过程中的一种分析问题和解决问题的综合能力。对于人工智能,美国麻省理工学院的温斯顿教授提出“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作”,斯坦福大学人工智能研究中心尼尔逊教授提出“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学”。综合来看人工智能是相对人的智能而言的。其本质是对人思维的信息过程的模拟,是人的智能的物化。是研究、开发模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能经过信息采集、处理和反馈三个核心环节,综合表现出智能感知、精确性计算、智能反馈控制,即感知、思考、行动三个层层递进的特征。

辑判断、决策,并产生相应反映。具体的研究领域包括知识表达、自动推理、机器学习等,与精确性计算及编程技术、存储技术、网络技术等密切相关,是大数据技术发展的远期目标,目前该领域研究还处于实验室研究阶段,其中机器学习是人工智能领域目前热度最高,科研成果最密集的领域。

智能反馈:智能反馈控制将前期处理和判断的结果转译为肢体运动和媒介信息传输给人机交互界面或外部设备,实现人机、机物的信息交流和物理互动。智能反馈控制是人工智能最直观的表现形式,其表达能力展现了系统整体的智能水平。智能反馈控制领域与机械技术、控制技术和感知技术密切相关,整体表现为机器人学,目前机械技术受制于材料学发展缓慢,控制技术受益于工业机器人领域的积累相对成熟。在学术界,实现人工智能有三种路线,一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有专家系统和知识工程。二是基于统计方法的仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生,三是行为主义,希望从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。

各国政府高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入,其中美国政府主要通过公共投资的方式牵引人工智能产业的发展,2013财年美国政府将22亿美元的国家预算投入到了先进制造业,投入方向之一便是“国家机器人计划”。

在技术方向上,美国将机器人技术列为警惕技术,主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。

现阶段的技术突破的重点一是云机器人技术,二是人脑仿生计算技术。美国、日本、巴西等国家均将云机器人作为机器人技术的未来研究方向之一。伴随着宽带网络设施的普及,云计算、大数据等技术的不断发展,未来机器人技术成本的进一步降低和机器人量产化目标实现,机器人通过网络获得数据或者进行处理将成为可能。目前国外相关研究的方向包括:建立开放系统机器人架构(包括通用的硬件与软件平台)、网络互联机器人系统平台、机器人网络平台的算法和图像处理系统开发、云机器人相关网络基础设施的研究等。

由于深度学习的成功,学术界进一步沿着连接主义的路线提升计算机对人脑的模拟程度。人脑仿生计算技术的发展,将使电脑可以模仿人类大脑的运算并能够实现学习和记忆,同时可以触类旁通并实现对知识的创造,这种具有创新能力的设计将会让电脑拥有自我学习和创造的能力,与人类大脑的功能几无二致。在2013年初的国情咨文中,美国总统奥巴马特别提到为人脑绘图的计划,宣布投入30亿美元在10年内绘制出“人类大脑图谱”,以了解人脑的运行机理。欧盟委员会也在2013年初宣布,石墨烯和人脑工程两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划,每项计划将在未来10年内分别获得10亿欧元的经费。美国ibm公司正在研究一种新型的仿生芯片,利用这些芯片,人类可以实现电脑模仿人脑的运算过程,预计最快到2019年可完全模拟出人类大脑。智能更面向实用。另外,由于hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。

既然“人工智能”的发展如此吸引人,那就一定具有相当多的发展方向啦,那么未来它的发展趋势会是如何呢?我们不妨可以设想一下:在计算机网络如此发达的社会中,我们可以利用人工智能来实现语言技术与人类生活的联系,虽然目前关于语言的研究尚未突破语义障碍,现在还看不出在解决自然语言中含糊暧昧的成份方面可能会取得多大的进展,也很难想象在近期内能实现对任意输入均可产生高质量译文的机器翻译系统或非常理想的篇章理解系统,我们所能看到的是一些有一定限制的但与人类生活密切相关的语言处理技术的发展。随着语言技术产品市场的不断壮大,语言技术也会得到更快的发展。另外,我们也可以利用人工智能来建立与理解复杂的自适应系统:下一个十年人工智能研究应着重于对未必能符号化、信息未必完全的复杂的自适应系统的研究,其中最关键的是如何理解与建立这样的系统。建立这样的系统需要发展一些新的理论与技术。首先必须发展能理解与处理上下文的技术,使所建立的系统能在不同的上下文情境下合理地处理各类问题;其次应发展多路学习机制,使系统能从复杂的变化的环境中同时学到多种技能(如机器人足球运动员就需要有这样的功能);另外还应探讨系统的可自动进化机制,使系统能从简单的被动式的系统逐步进化为复杂的具有自适应能力的系统。基于人工智能的发展趋势,还可以在机器学习的研究方面取得长足的发展。许多新的学习方法相继问世并获得了成功的应用,如增强学习算法、reinforcementlearning等。也应看到,现有的方法处理在线学习方面尚不够有效,寻求一种新的方法,以解决移动机器人、自主agent、智能信息存取等研究中的在线学习问题是研究人员共同关心的问题,相信不久会在这些方面取得突破。

还有,在最受人关注的机器人领域里,人工智能蕴含着十分强大的发展空间!虽然现在已经实现了机器人与人的对话交流等强大的功能,但相信在未来,人们一定会挖掘出人工智能更多更强大的功能来运用到机器人中去,让机器人更好的未人们服务!最后,在控制领域内,虽然已经实现了远程操控技术,但并不普及,相信在未来,我们可以更轻松自如的利用人工智能来实现对家用电器等的远程控制的普及,让每一个房子都装有这样的系统,那么在主人回家之前就可以设定好最符合主人生活习惯的环境,让辛苦劳累了一天的主人能够更好的享受到家的温馨!

人工智能诞生50多年来,在崎岖不平的道路上取得了可喜的进展。人工智能的人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。不管是在昨天、今天还是明天,“人工智能”都是新时代的宠儿,注定未社会的发展,人们生活水平的提高做出不可小觑的贡献!我们共同希望“人工智能”的明天更美好!

三、人工智能技术的主要研究内容与核心技术难题。

人工智能是一种外向型的学科,它不但要求研究它的人懂得人工智能的知识,而且要求有比较扎实的数学基础及哲学和生物学基础,只有这样才可能让一台什么也不知道的机器模拟人的思维。

因为人工智能的研究领域十分广阔,它总的来说是面向应用的,主要研究领域有专家系统,有人在工作,它就可以用在什么地方,因为人工智能的最根本目的还是要模拟人类的思维。可以归纳为八个字:机器智能、智能机器。

机器智能:例如,用计算机打印常用的报表,进行一些常规的文字处理,都是程序化的操作,谈不上有智能。但是,用计算机给人看病,进行病理诊断和药物处方,或者,用计算机给机器看病,进行故障诊断和维修处理,就需要计算机有人工智能。人工智能学科领域中有一个重要的学科分支是“专家系统”(expertsystem),简称代写论文es。就是用计算机去模拟、延伸和扩展专家的智能。基于专家的知识和经验,可以求解专业性问题的、具有人工智能的计算机应用系统。如:医疗诊断专家系统,故障诊断专家系统等。

智能机器:“智能机器”(intelligentmachine),简称im,研究如何设计和制造具有更高智能水平的机器,特别是设计和制造更聪明的计算机。现在的计算机,虽然经历了从电子管、晶体管、集成电路、超大规模集成电路等几代的发展,在工艺和性能方面都有巨大的进步。但是,在原理上,还没有重大的突破。通常,人们用计算机,不仅要告诉计算机:做什么?,而且还必须详细地、正确地告诉计算机:如何做?。也就是说,人们要根据工作任务的需求,以适当的计算机语言,进行相应的软件设计,编制面向该任务的计算机应用程序,并且,正确地操作计算机,装入、启动该应用程序,才能用计算机完成该项工作任务。这里,计算机实质上只是机械地、被动地执行人们编制的应用程序指令的“电子奴仆”,也不理解为什么要做这项工作,即不懂得:为什么?。因而,只不过是一个低智能的、不聪明的“电脑”。那么,如何设计和制造高智能的、聪明的“电脑”呢?这正是人工智能另一方面的研究对象和学科任务。

目前人工智能主要研究内容是:分布式人工智能与多智能主体系统、人工思维模型、知识系统(包括专家系统、知识库系统和智能决策系统)、知识发现与数据挖掘(从大量的、不完全的、模糊的、有噪声的数据中挖掘出对我们有用的知识)、遗传与演化计算(通过对生物遗传与进化理论的模拟,揭示出人的智能进化规律)、人工生命(通过构造简单的人工生命系统并观察其行为,探讨初级智能的奥秘)、人工智能应用(如:模糊控制、智能大厦、智能人机接口、智能机器人等)等等。

未来人工智能的研究方向主要有:人工智能理论、机器学习模型和理论、不精确知识表示及其推理、常识知识及其推理、人工思维模型,智能人机接口、多智能主体系统、知识发现与知识获取、人工智能应用基础等。

“人工智能”(artificialintelligence)一词最初是在1956年dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

人工智能的近期研究目标在于建造智能计算机,用以代替人类从事脑力劳动,即使现有的计算机更聪明更有用。正是根据这一近期研究目标,我们才把人工智能理解为计算机科学的一个分支。人工智能还有它的远期研究目标,即探究人类智能和机器智能的基本原理,研究用自动机(automata)模拟人类的思维过程和智能行为。这个长期目标远远超出计算机科学的范畴,几乎涉及自然科学和社会科学的所有学科。在重新阐述我们的历史知识的过程中,哲学家、科学家和人工智能学家有机会努力解决知识的模糊性以及消除知识的不一致性。这种努力的结果,可能导致知识的某些改善,以便能够比较容易地推断出令人感兴趣的新的真理。人工智能研究尚存在不少问题,这主要表现在下列几个方面:宏观与微观隔离:一方面是哲学、认知科学、思维科学和心理学等学科所研究的智能层次太高、太抽象;另一方面是人工智能逻辑符号、神经网络和行为主义所研究的智能层次太低。这两方面之间相距太远,中间还有许多层次未予研究,无法把宏观与微观有机地结合起来和相互渗透。全局与局部割裂:人类智能是脑系统的整体效应,有着丰富的层次和多个侧面。但是,符号主义只抓住人脑的抽象思维特性;连接主义只模仿人的形象思维特性;行为主义则着眼于人类智能行为特性及其进化过程。它们存在明显的局限性。必须从多层次、多因素、多维和全局观点来研究智能,才能克服上述局限性。3理论和实际脱节大脑的实际工作,在宏观上我们已知道得不少;但是智能的千姿百态,变幻莫测,复杂得难以理出清晰的头绪。在微观上,我们对大脑的工作机制却知之甚少,似是而非,使我们难以找出规律。在这种背景下提出的各种人工智能理论,只是部分人的主观猜想,能在某些方面表现出”智能”就算相当成功了。

上述存在问题和其它问题说明,人脑的结构和功能要比人们想象的复杂得多,人工智能研究面临的困难要比我们估计的重大得多,人工智能研究的任务要比我们讨论过的艰巨得多。同时也说明,要从根本上了解人脑的结构和功能,解决面临的难题,完成人工智能的研究任务,需要寻找和建立更新的人工智能框架和理论体系,打下人工智能进一步发展的理论基础。我们至少需要经过几代人的持续奋斗,进行多学科联合协作研究,才可能基本上解开”智能”之谜,使人工智能理论达到一个更高的水平。人工智能要解决的问题主要是以下几个方面:

一、识别过程,外界输入的信息向概念逻辑信息转译,将动态静态图像、声音、语音、文字、触觉、味觉等信息转化为形式化(大脑中的信息存储形式)的概念逻辑信息。

二、智能运算过程,输入信息刺激自我学习、信息检索、逻辑判断、决策,并产生相应反应。

三、控制过程,将需要输出的反应转译为肢体运动和媒介信息。实用机器人在第三个方面做得比较多,而识别和智能运算是很弱的,尤其是概念知识的存储形式、逻辑判断和决策这些方面更是鲜有成果,这正是人工智能要重点解决的问题。

四、人工智能技术的评价与认识。

人工智能是一门包括计算机科学、控制学、信系论、语言论、神经生理学、心理学、数学、哲学等多种学科相互渗透发展起来的学科,其研究对象可以归纳为“机器智能、智能机器”,它体现在思维、感知、行为三个层次,而它要模拟眼神、扩展人的智能,其研究内容可以分为机器思维和思维机器、机器感知和感知机器、机器行为和行为机器三个层次。人工智能研究与应用虽然取得了不少成果,但离全面推广应用还有很大距离,还有许多问题有待于解决且需要许多学科的研究专家共同创作。人工智能(ai)是机器智能和计算机科学的一个分支。人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。这些年来,人工智能在计算机科学、逻辑学等领域已取得重大成就,但离真正的人类智能还相差甚远。

人工智能是一门研究机器智能和智能机器的新型的、综合性的、具有强大生命力的边缘学科,它研究怎样让计算机或智能机器(包括硬件和软件)模仿、延伸和扩展人脑从事推理、规划、计算、思考、学习等思维活动,解决迄今为止需要人类专家才能处理好的复杂问题。

人工智能远期目标是要制造智能机器,使现有的计算机更聪明,能够模拟人类的智能行为。人工智能的近期目标是实现机器智能,即先部分地或某种程度地实现机器的智能,从而使现有的计算机更灵活、更好用和更有用,成为人类的智能化信息处理工具。目前,人工智能技术正在向大型分布式人工智能、大型分布式多专家协同系统、广义知识表达、综合知识库、并行推理、多种专家系统开发工具、大型分布式人工智能开发环境和分布式环境下的多智能体协同系统等方向发展。尽管如此,从目前来看,人工智能仍处于学科发展的早期阶段,其理论、方法和技术都不太成熟,人们对它的认识也比较肤浅。这些还都有待于人工智能工作者的长期探索。

五、结论。

先进制造技术当今国际间科技竞争的焦点,随着社会的发展,市场需求的个性化与多元化,人们对产品的要求也日益多元化,市场竞争日趋激烈,企业要在日趋激烈的市场竞争中生存发展,就必须采用先进的制造技术。进入新世纪,随着中国加入wto,中国与世界的越来越紧密,先进制造制造技术必然会朝着全球化、系统化、集成化、网络化、虚拟化、自动化、绿色化、精密化、智能化、快速化的趋势发展。

人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,ai带来的帮助不言而喻。更重要的是,ai反过来有助于人类最终认识自身智能的形成。

人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。ai也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于ai在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。人工智能对社会的影响。ai也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。

伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。

人工智能的长期目标是建立人类水平的人工智能,由脑科学、认知科学、人工智能等共同研究,形成交叉学科智能科学。脑科学从分子水平、细胞水平、行为水平研究自然智能机理,建立脑模型,揭示人脑的本质。认知科学是研究人类感知、学习、记忆、思维、意识等人脑心智活动过程的科学。人工智能研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。智能科学不仅要进行功能仿真,而且要从机理上研究,探索智能的新概念、新理论、新方法。

人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生;另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。

人工智能原理及其应用北京:电子工业出版社,2010。

您可能关注的文档