2023年任意角的三角函数评课稿(优秀17篇)

  • 上传日期:2023-11-20 11:06:46 |
  • ZTFB |
  • 11页

在工作和学习中,总结可以帮助我们发现存在的问题并提出解决方案。写一篇完美的总结需要首先梳理出要总结的内容和要表达的中心思想。以下是小编为大家整理的一些优秀总结范文,供大家参考和学习。

任意角的三角函数评课稿篇一

陈老师的这节课是九年级下册地二十八章第一节的内容,这是一节很重要的内容,如果学生掌握不牢固,对后面的运用锐角三角函数解决实际问题则会遇到很大的困难。

陈老师这节课是一节成功的课,首先教学目标明确地体现在每一教学环节中,教学手段紧密地围绕目标,为实现目标服务。尽快地接触重点内容,重点内容的教学时间得到保证,重点知识和技能得到巩固和强化。先是引导学生一起明确本节课的学习目标、重点和难点。然后利用熟悉的情境引导学生小组合作探究,是学生主动参与教学活动。通过复习我们学过的三角函数,明确这些函数中的自变量,应变量各是什么?进行新课的探究。

在探究sin30?=?cos30?=?tan30?=?时完全由学生小组合作讨论得出,教师只是总结,整个课堂收放适当,进而利用类比的方法探究45?60?和角的三角函数值,通过探究完成表格,然后巧记。再利用知识开始习题的应用练习,加以对知识的巩固。

1、整个教学过程思路清晰,层次分明,使不同的学生都能有所收获。整个课堂结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。学生也很配合,整个课堂气氛挺活跃,学生都积极地参与了问题的思考,教学效果比较高。

2、活处理教材,教法学法得当。课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”纵观这节课,陈老师不是简单的知识传授者,而是一个组织者、引导者。陈老师教学时采用讨论,抢答等活动调动了大部分学生的学习主动性,通过学生合作、交流,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的见解。学生始终保持着高昂的学习情绪,感受到了学习数学的快乐,体验到了成功的喜悦。

3、不愧是有经验的教师,不论从教学设计还是整个课堂的控制,都井然有序,板书工整,自己美观,可以看出陈老师在每上一节课都做了充分的课前准备工作,也给我启示,好的课堂前提要有充分的课前准备。

“教学是一门遗憾的艺术”。陈老师的这节课也存在一些遗憾,为此我提出个人不成熟的看法:

1.教学中可通过精炼、精彩的语言鼓励学生、及时点拨学生、评价学生。

2.课堂上学生回答的错点误点也是很好的教材,可加以利用突破实际问题转化为数学模型的难点。

教学因学生成而精彩,因缺憾而美丽。陈老师的这节课虽然也有一点点缺憾,但整体上还是较好的一堂课。

以上愚见,请各位老师指正。

任意角的三角函数评课稿篇二

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

学生已经掌握的内容,学生学习能力。

1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性。

教学过程分析。

总体来说,由旧及新,由易及难,

逐步加强,逐步推进。

先由初中的直角三角形中锐角三角函数的定义。

过度到直角坐标系中锐角三角函数的定义。

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答。

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

知识点二:三个三角函数的定义域。

知识点三:三角函数值的正负与角所在象限的关系。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

小结回顾课堂内容。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

板书设计(见ppt)。

任意角的三角函数评课稿篇三

任意角的三角函数是三角函数这一章里最重要的一节课,是本章的基础。因此本节课的重点放在了任意角的三角函数的理解上。在本节课的开头以学生所熟悉的直角三角形的锐角入手,引导学生尝试探究,逐步深入,引出任意三角函数的定义,以问题的形式巩固深化任意角三角函数值的计算。引导学生自主探究任意角的三角函数的生成过程,让学生在活动中体验数学与社会的联系,新旧知识的内在联系。

通过任意角三角函数的定义,启发学生找到各个三角函数在每个象限的符号以及在坐标轴上的值。并用“一全正,二正弦,三余弦,四正切”这一句话来概括了各个象限的符号。

在例题的设置上,例1是已知一个角终边上一点的坐标,求这个角的三个三角函数值。通过这个例题的练习,让学生更好地巩固了任意三角函数的定义,会求任意一个角的三角函数。例2和例3的设置是让学生进一步熟记各个三角函数在每个象限的范围以及坐标轴上的值。例4是把几个三角函数组合在一起,形成一个新的函数,结合函数的表达形式求定义域,能够让学生反过来已知三角函数值的符号去判断角的大小。四个立体的设置让学生更好地掌握任意角的三角函数,为以后的学习打下基础。

《对数函数的图象和性质》这节课再次利用学习指数函数时的细胞分裂例子,从研究指数函数的反面入手,已知了分裂后的个数求分裂的次数,由此引出了对数函数的概念。把对数函数和指数函数相对比能够发现它们的定义域和值域相互交换,它们互为反函数。用描点法画出对数函数的图象,再仿照研究指数函数的方法让学生自主地去探究对数函数的定义域,值域,定点,单调性,函数值的分布等各个性质。教给学生方法比教给学生知识更重要。通过类比,以旧引新,自然过渡到本节的学习,用研究指数函数的图象与性质的方法来研究对数函数的图象与性质。在教学过程中,引导学生确定探究问题、探究方向和探究步骤,确保了探究的有效性;让学生动手画图、观察图象,启发学生思考、实验、分析、归纳,注重探究的过程与方法。让学生成为学习的主人,学会学习,学到“对比联系”、“数形结合”及“分类讨论”的思想方法。

例题的设置主要就是围绕对数函数的性质。总最基本的定义域和值域开始。再用对数函数的单调性去比较两个对数的大小以及解对数形式的不等式。对数函数是函数中的一种,因此,例5后的练习把对数函数和二次函数结合在了一起,并且加上了一个参数,根据对数函数和二次函数的性质去讨论参数的取值范围。通过这些例题的练习使学生加深了对对数函数的理解。

任意角的三角函数评课稿篇四

学情分析:学生已经掌握的内容,学生学习能力。

1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2.学生具备一定的自学能力,部分同学对数学的学习有兴趣和积极性。

4、体会类比,数形结合的思想。

(2)正确理解三角函数是以实数为自变量的函数;。

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力.

情感目标:

(1)学习转化的思想,

(2)培养严谨的学习态度;。

二说教法。

温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

三说学法。

通过对已经掌握的锐角三角函数推广到任意角的三角函数定义,,引导出三角函数在各个象限内的符号,会求任意角的三角函数,学会从现有的知识探索新的知识,善于发现问题,提出问题,归纳问题,从而达到解决问题的目的。

四教学过程。

总体来说,由旧及新,由易及难,逐步加强,层层深入由初中的直角三角形中锐角三角函数的定义过度到直角坐标系中锐角三角函数的定义再发展到直角坐标系中任意角三角函数的定义给定定义后通过应用定义又逐步发现新知识拓展完善定义.

1引入:练习:sin300=cos300=tan300=。

那么3000,300000呢?

复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答:。

sina=对边/斜边。

cosa=对边/斜边。

tana=对边/斜边。

2逐步拓展:在高中我们已经建立了直角坐标系,从直角三角形改为平面直角坐标系。

那么三角函数的定义能否也放到坐标系去研究呢?

表示三角函数;sin=,cos=,tan=,。

(1)叫做a的正弦,记作sina,sin=,。

(2)x叫做a的余弦,记作cosa,即cosa=;。

(3),叫做a的正切,记作tana,即tana=,。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关.

3例题讲解。

例1已知角a的终边经过p(2,-3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

知识归纳三:三角函数值的正负与角所在象限的关系。

例题2:已知a在第二象限且sina=0.2求cosa,tana。

求cosa,tana。

拓展,如果不限制a的象限呢,可以留作课外探讨。

4随堂练习。

1、若,则在(b)。

a.第一、四象限b.第一、三象限c.第一、二象限d.第二、四象限。

2、角终边上有一点(a,a)则sin=(b)。

a.b.-或c.-d.1。

5小结:。

6课堂作业p1001,2,4。

(学生演板,教师讲解)。

课后分层作业(满足不同层次的学生)。

必作p231,2,3练习b。

五板书设计。

课题引入定义例一例二。

小结。

任意角的三角函数评课稿篇五

三角函数的教学中,要充分发挥单位圆的作用,并且要注意逐渐使学生形成用单位圆讨论三角函数问题的意识和习惯,引导学生自主地用单位圆探索三角函数的有关性质,提高分析和解决问题的能力。在我们的教学中可以注意以下几点:。

(1)进行定义的应用,教材14页例1考查新教材定义,例2考查旧教材定义;强化练习、课堂小结、布置作业。课上的很顺,自我感觉良好。但接下来发生的事却直得深思,自习辅导课上针对上节内容布置当堂作业,题目是教材17页第一题,当堂批阅、统计,出错率20%,我很愕然。立即进行进一步的学情调研:让学生每人准备一张白纸,可以不署名,限时做教材23页a组练习第二题,当堂批阅、统计,出错率60%,真的.没有想到。

(2)这节课从知识传授上看比较成功,三个问题环环相扣,但从能力培养上显得不足,主要是在例题与练习的处理上,投入的时间不足,没有及时将知识内化为能力,但通过作业和调研题的讲解,师生对三角函数概念的理解都有了质的飞跃。

(3)例题2变式的目的是为了调研,此题相对于学生已有的知识是难了一点,因此出错率高。在今后的教学中要注意梯度的设计,跨度不要太大,贴近教材、贴近学生、贴近实际。

(4)这节课也许是我设计得太自然了,台阶过密、跨度太小,学生在学习过程中没有遇到陷阱,没有产生激烈的思维碰撞,因此,看似顺畅,效果不佳。下一步要注意梯度的设计,台阶不要过密,要有一定的思维跨度。

写在最后,多媒体给中学教学带来了新工具,但同时也滋生了盲目跟风,个别教师对新课改理解不深、片面追求课堂气氛,将“满堂灌”变成了“满堂问”。学生为了表现自己,争抢回答问题,失去了对问题的深入思考,致使学生基础不扎实,进一步表明过高估计自己的解题能力,存在着严重的“浮夸风”。在今后的教学中要切实抓好落实,把数学解题真正落实到学生的笔头上。

范文参考任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立......

市教育局举办的青年教师讲课比赛结束了,作为参赛选手,我觉得自己的课上得很失败。我不是一个逃避失败的人,但是心里真的很难受。关于比赛的种种总......

肥东县长临河中学赵治龙任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此......

任意角的三角函数评课稿篇六

教学内容:任意角三角函数的定义、定义域,三角函数值的符号。

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

学情分析:

学生已经掌握的内容,学生学习能力。

1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

知识目标:

(1)任意角三角函数的定义;三角函数的.定义域;三角函数值的符号,

能力目标:

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

德育目标:

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性。

教学过程分析。

总体来说,由旧及新,由易及难,

逐步加强,逐步推进。

先由初中的直角三角形中锐角三角函数的定义。

过度到直角坐标系中锐角三角函数的定义。

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答。

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

知识点二:三个三角函数的定义域。

知识点三:三角函数值的正负与角所在象限的关系。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

小结回顾课堂内容。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

板书设计(见ppt)。

任意角的三角函数评课稿篇七

三角函数的教学中,要充分发挥单位圆的作用,并且要注意逐渐使学生形成用单位圆讨论三角函数问题的意识和习惯,引导学生自主地用单位圆探索三角函数的有关性质,提高分析和解决问题的能力。在我们的教学中可以注意以下几点:

(1)进行定义的应用,教材14页例1考查新教材定义,例2考查旧教材定义;强化练习、课堂小结、布置作业。课上的很顺,自我感觉良好。但接下来发生的事却直得深思,自习辅导课上针对上节内容布置当堂作业,题目是教材17页第一题,当堂批阅、统计,出错率20%,我很愕然。立即进行进一步的学情调研:让学生每人准备一张白纸,可以不署名,限时做教材23页a组练习第二题,当堂批阅、统计,出错率60%,真的没有想到。

(2)这节课从知识传授上看比较成功,三个问题环环相扣,但从能力培养上显得不足,主要是在例题与练习的处理上,投入的时间不足,没有及时将知识内化为能力,但通过作业和调研题的讲解,师生对三角函数概念的理解都有了质的飞跃。

(3)例题2变式的目的是为了调研,此题相对于学生已有的知识是难了一点,因此出错率高。在今后的教学中要注意梯度的设计,跨度不要太大,贴近教材、贴近学生、贴近实际。

(4)这节课也许是我设计得太自然了,台阶过密、跨度太小,学生在学习过程中没有遇到陷阱,没有产生激烈的思维碰撞,因此,看似顺畅,效果不佳。下一步要注意梯度的设计,台阶不要过密,要有一定的思维跨度。

写在最后,多媒体给中学教学带来了新工具,但同时也滋生了盲目跟风,个别教师对新课改理解不深、片面追求课堂气氛,将“满堂灌”变成了“满堂问”。学生为了表现自己,争抢回答问题,失去了对问题的深入思考,致使学生基础不扎实,进一步表明过高估计自己的解题能力,存在着严重的“浮夸风”。在今后的教学中要切实抓好落实,把数学解题真正落实到学生的笔头上。

任意角的三角函数评课稿篇八

改进的设想:

(1)回顾任意角、象限角与轴线角的概念.。

(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特殊角的三角函数值?(意图是让学生说出)。

重新定义的原则有哪些?

按上述几个原则让学生自主探究.。

任意角的三角函数评课稿篇九

各位同仁,各位专家:。

先对教材进行分析。

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要.同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程.

学情分析:。

学生已经掌握的内容,学生学习能力。

1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2.我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

知识目标:。

能力目标:

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力.

德育目标:

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性.

教学过程分析。

总体来说,由旧及新,由易及难,。

逐步加强,逐步推进。

给定定义后通过应用定义又逐步发现新知识拓展完善定义.

具体教学过程安排。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答。

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关.

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,-3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

知识点三:三角函数值的正负与角所在象限的关系。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0.2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

小结回顾课堂内容。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

板书设计(见ppt)。

任意角的三角函数评课稿篇十

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

1、初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2、我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

(1)任意角三角函数的定义;三角函数的.定义域;三角函数值的符号,

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性。

总体来说,由旧及新,由易及难,

逐步加强,逐步推进。

先由初中的直角三角形中锐角三角函数的定义。

过度到直角坐标系中锐角三角函数的定义。

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,—3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0。2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

任意角的三角函数评课稿篇十一

各位同仁,各位专家:。

先对教材进行分析。

地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要.同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程.

学情分析:。

学生已经掌握的内容,学生学习能力。

1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2.我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下。

知识目标:。

能力目标:

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力.

德育目标:

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法。

教法学法:温故知新,逐步拓展。

(2)通过例题讲解分析,逐步引出新知识,完善三角定义。

运用多媒体工具。

(1)提高直观性增强趣味性.

教学过程分析。

总体来说,由旧及新,由易及难,。

逐步加强,逐步推进。

给定定义后通过应用定义又逐步发现新知识拓展完善定义.

具体教学过程安排。

引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答。

sina=对边/斜边=bc/ab。

cosa=对边/斜边=ac/ab。

tana=对边/斜边=bc/ac。

逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到。

提醒学生思考:由于相似比相等,对于确定的角a,这三个比值的大小和p点在角的终边上的位置无关.

精心设计例题,引出新内容深化概念,完善定义。

例1已知角a的终边经过p(2,-3),求角a的三个三角函数值。

(此题由学生自己分析独立动手完成)。

例题变式1,已知角a的大小是30度,由定义求角a的三个三角函数值。

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域。

由学生分析讨论,得出结论。

知识点三:三角函数值的正负与角所在象限的关系。

由学生推出结论,教师总结符号记忆方法,便于学生记忆。

例题2:已知a在第二象限且sina=0.2求cosa,tana。

求cosa,tana。

综合练习巩固提高,更为下节的同角关系式打下基础。

拓展,如果不限制a的象限呢,可以留作课外探讨。

小结回顾课堂内容。

课堂作业和课外作业以加强知识的记忆和理解。

课堂作业p161,2,4。

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)。

课后分层作业(有利于全体学生的发展)。

必作p231(2),5(2),6(2)(4)选作p233,4。

板书设计(见ppt)。

文档为doc格式。

任意角的三角函数评课稿篇十二

首先,让学生回顾初中相关内容——锐角三角函数的概念、特殊角的三角函数值等;然后将初中的锐角三角形放到直角坐标系中,出现了点的坐标,邻、对、斜变成了横、纵、r(r=|op|)。教材上的定义自然推出;再次,将r特殊化令r=1,教材上的定义立即出现。

最后,进行定义的应用,教材14页例1考查新教材定义,例2考查旧教材定义;强化练习、课堂小结、布置作业。课上的很顺,自我感觉良好。

但接下来发生的事却直得深思,自习辅导课上针对上节内容布置当堂作业,题目是教材17页第一题,当堂批阅、统计,出错率20%,我很愕然。立即进行进一步的学情调研:让学生每人准备一张白纸,可以不署名,限时做教材23页a组练习第二题,当堂批阅、统计,出错率60%,真的没有想到。

过后,我写下了四条教学反思:

这节课从知识传授上看比较成功,三个问题环环相扣,但从能力培养上显得不足,主要是在例题与练习的处理上,投入的时间不足,没有及时将知识内化为能力,但通过作业和调研题的.讲解,学生对三角函数概念的理解都有了质的飞跃。

a组练习二的目的是为了调研,此题相对于学生已有的知识是难了一点,因此出错率高。在今后的教学中要注意梯度的设计,跨度不要太大,贴近教材、贴近学生、贴近实际。

这节课也许是我设计得太自然了,台阶过密、

片面追求课堂气氛,将“满堂灌”变成了“满堂问”。学生为了表现自己,争抢回答问题,失去了对问题的深入思考,致使学生基础不扎实了,计算器的使用也降低了学生基本的运算能力。

当统计完调研题后,我提问数学课代表,让他猜测答对率,他回答--80%(实际为40%)。进一步表明了学生过高估计自己的解题能力,存在着严重的“浮夸风”。在今后的教学中要切实抓好落实,把数学解题真正落实到学生的笔头上。

任意角的三角函数评课稿篇十三

任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在此基础上初步建立任意角三角函数概念的意义,《任意角的三角函数》教学反思。如,计算方法、定义域、值域、符号表示、有关结论(与点的位置的.选取无关)后,首先提供“坐标系”作为脚手架,并引发学生的认知冲突—“在坐标系下,如何研究一个任意角的三角函数?”并以坐标系为平台,有层次的研究随角的变化,即第一象限下的锐角(认识研究方法的变化,以及符号表示的变化)——0~2π范围内的角(认识该范围内角的三角函数的表示方法,特别是值域的变化)——不同象限下终边相同的角(逐渐形成计算一个任意角的三角函数的操作过程)。

锐角三角函数概念教学时如果是先给一个锐角,再构造三角形,而不是象当前大多数教材中采用的直接放在一个直角三角形下,对学生概念的迁移会更有帮助。

任意角的三角函数评课稿篇十四

本节课是第一轮初三中考总复习有关锐角三角函数的复习课,根据现在的中考特点及考纲要求,进行相应的复习和巩固。现就本节课的课堂教学评价如下:

1、正确分析现在中考命题的方向、热点及考纲要求,得出有关锐角三角函数考点的知识要点及各种题型,通过课堂教学在锐角三角函数的基本概念及运算等基础知识和基本技能得到相应的发展。

2、本节课采用分阶段,分层次归类复习。

(1)基本概念领会阶段。学生对概念,公式,定义的理解与掌握。

(2)基本方法学习阶段。使学生对有关基本技能训练,掌握课本例题类型,能举一反三,触类旁通。

(3)针对练习阶段。检查学生对基本概念,基本技能的掌握情况。

3、本节课选题方面有以下几个特点。

(1)有针对性,突出重要的知识点和思想方法。

(2)具有一定的应用性,即能考察学生的数学基础知识,又能考察学生的数学应用能力。

(3)富有一定的思考性。有几个例题,有分类思想方法,能锻炼学生思维的灵活性。

(4)有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。

4、本节课教师能够充分调动学生上课兴趣,从而使学生复习数学的积极性,主动性发挥出来,这样做到以学生为主,教师起主导作用。

陈雪君。

这是一节初三的复习课,王老师在教案中讲到在近几年中考数学试题中,在锐角三角函数这节命题多以填空题,选择题的形式出现,主要考察三角函数的计算,三角函数的定义,三角函数的增减性,同角三角函数关系,互余三角函数关系。围绕着这个目标,王老师先让学生明白他们应该掌握什么,必须掌握什么,并精心设计了很多练习,从学生的反映中来看,大多数同学都掌握的比较好,基本达到了黄老师事先所制定的教学目标。

王老师教学基本功比较扎实,板书非常清晰,教态和语言有一定的号召力。对教学内容非常熟悉。我想如果把这节课分为两节课,那效果会更加好。

这是一节初三总复习课,内容是锐角三角函数。王老师以基础知识的复习、基本技能的训练为主,紧跟教学大纲,选择了几个典型例题,开拓了学生的知识面,丰富了学生的题型结构。同时向学生进行了一题多种解法思想的渗透,这样活跃了学生的思维,丰富了学生的知识内涵。老师对教材,教学大纲理解得非常透彻,对课堂把握能力强,反应很快,能积极跟上学生的思维,因时制宜的调整教学节奏,语速快而清晰,教态、板书也能给学生有积极的影响,富有感染力。例题的选择合理、新颖且有难度,即有常见的基本计算与证明,也有一定难度的探索型、操作型问题,更有对于知识点综合应用的综合题,层次鲜明,满足了不同奋斗目标学生的不同要求。教学上多媒体的运用,较直观地了解题意,提高解答的准确率,课堂上充分发挥了学生的主体性,以学生的发展为本,通过小组合作,增强了学生的合作意识,又取长补短,互相竞争,营造了良好的教学氛围,而教师知识组织者,只是参与、启发、点拨、纠偏,培养了学生的创造能力和发散思维能力。

任意角的三角函数评课稿篇十五

“任意角的三角函数”是三角函数这一章里最重要的一节课,是本章的基础,也是学生难以理解的地方。因此,本节课的重点放在了任意角的三角函数的理解上。在本节课的开头以学生所熟悉的直角三角形的锐角入手,引导学生尝试探究,逐步深入,引出任意三角函数的定义,以问题的形式巩固深化任意角三角函数值的计算。引导学生自主探究任意角的三角函数的生成过程,让学生在活动中体验数学与社会的联系,新旧知识的内在联系。

通过任意角三角函数的定义,启发学生找到各个三角函数在每个象限的符号以及在坐标轴上的值。并用“一全正,二正弦,三余弦,四正切”这一句话来概括了各个象限的符号。

在例题的设置上,例1是已知一个角终边上一点的坐标,求这个角的三个三角函数值。通过这个例题的练习,让学生更好地巩固了任意三角函数的定义,会求任意一个角的三角函数。例2和例3的设置是让学生进一步熟记各个三角函数在每个象限的范围以及坐标轴上的值。例4是把几个三角函数组合在一起,形成一个新的函数,结合函数的表达形式求定义域,能够让学生反过来已知三角函数值的符号去判断角的大小。

但是,要想让学生真正的学会并且灵活运用所学的知识,只靠老师上课讲是远远不够的,还需要学生在课下多做练习才行,所以,在讲课的基础上,我们还需要督促学生多做练习,因为只有熟才能够生巧,在以后的教学中,我还需要多多反思,多多探索。

任意角的三角函数评课稿篇十六

再次,将r特殊化令r=1,教材上的定义立即出现。

最后,进行定义的应用,教材14页例1考查新教材定义,例2考查旧教材定义;强化练习、课堂小结、布置作业。课上的很顺,自我感觉良好。

但接下来发生的事却直得深思,自习辅导课上针对上节内容布置当堂作业,题目是教材17页第一题,当堂批阅、统计,出错率20%,我很愕然。立即进行进一步的学情调研:让学生每人准备一张白纸,可以不署名,限时做教材23页a组练习第二题,当堂批阅、统计,出错率60%,真的没有想到。

过后,我写下了四条教学反思:

这节课从知识传授上看比较成功,三个问题环环相扣,但从能力培养上显得不足,主要是在例题与练习的处理上,投入的时间不足,没有及时将知识内化为能力,但通过作业和调研题的讲解,学生对三角函数概念的理解都有了质的飞跃。

a组练习二的目的是为了调研,此题相对于学生已有的知识是难了一点,因此出错率高。在今后的教学中要注意梯度的设计,跨度不要太大,贴近教材、贴近学生、贴近实际。

这节课也许是我设计得太自然了,台阶过密、

片面追求课堂气氛,将“满堂灌”变成了“满堂问”。学生为了表现自己,争抢回答问题,失去了对问题的深入思考,致使学生基础不扎实了,计算器的使用也降低了学生基本的运算能力。

当统计完调研题后,我提问数学课代表,让他猜测答对率,他回答--80%(实际为40%)。进一步表明了学生过高估计自己的解题能力,存在着严重的“浮夸风”。在今后的教学中要切实抓好落实,把数学解题真正落实到学生的笔头上。

任意角的三角函数评课稿篇十七

各位同仁,各位专家:

教学内容:任意角三角函数的定义、定义域,三角函数值的符号。

地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

教学重点:任意角三角函数的定义

学生已经掌握的内容,学生学习能力

1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

(1)理解并掌握任意角的三角函数的定义;

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法

教法学法:温故知新,逐步拓展

(2)通过例题讲解分析,逐步引出新知识,完善三角定义

运用多媒体工具

(1)提高直观性增强趣味性。

教学过程分析

总体来说, 由旧及新,由易及难,

逐步加强,逐步推进

先由初中的直角三角形中锐角三角函数的定义

过度到直角坐标系中锐角三角函数的定义

再发展到直角坐标系中任意角三角函数的定义

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排

引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答

sina=对边/斜边=bc/ab

cosa=对边/斜边=ac/ab

tana=对边/斜边=bc/ac

逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。

从而得到

知识点一:任意一个角的三角函数的定义

提醒学生思考:由于相似比相等,对于确定的角a ,这三个比值的大小和p点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义

例1已知角a 的终边经过p(2,—3),求角a的三个三角函数值

(此题由学生自己分析独立动手完成)

例题变式1,已知角a 的大小是30度,由定义求角a的三个三角函数值

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域

由学生分析讨论,得出结论

知识点二:三个三角函数的定义域

知识点三:三角函数值的正负与角所在象限的关系

由学生推出结论,教师总结符号记忆方法,便于学生记忆

例题2:已知a在第二象限且 sina=0。2 求cosa,tana

求cosa,tana

综合练习巩固提高,更为下节的同角关系式打下基础

拓展,如果不限制a的象限呢,可以留作课外探讨

小结回顾课堂内容

课堂作业和课外作业以加强知识的记忆和理解

课堂作业p16 1,2,4

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)

课后分层作业(有利于全体学生的发展)

必作p23 1(2),5(2),6(2)(4) 选作p23 3,4

板书设计(见ppt)

您可能关注的文档