最新大数据论文范文(大全14篇)

  • 上传日期:2023-11-10 09:50:36 |
  • ZTFB |
  • 9页

总结是知识沉淀的过程,也是对过去的回顾和对未来的规划。切记总结不是简单的复述,而是要进行思考和分析。总结是一个提高思考和表达能力的过程,以下是一些不错的总结范文,希望能够帮助到大家。

大数据论文篇一

大数据或海量数据是指所涉及的海量数据,无法通过当前主流软件工具检索、管理、处理和整理成更活跃的信息,帮助企业在合理的时间内做出商业决策。以下是为大家整理的关于,欢迎品鉴!

摘要:近年来由于计算器技术和信息产业的快速发展,促使了相关的数据量也产生了极大的增长。然而面对这些庞大且杂乱的多维数据集,我们无法快速且有效的找到我们所需要的信息。因此我们必须要使用数据挖掘技术以从数据集中去提取我们所需要的资料,并且进行分析与处理。在本中,将介绍大数据挖掘分析软件rapidminer,并且与其他旧有的数据挖掘分析软件来做一个功能性的比较。

关键词:信息;rapi;dminer;大数据;挖掘;应用。

0引言。

透过线性回归、类神经网络、判定树和支持向量机,说明应用rapidminer进行大数据挖掘分析的运作流程,并介绍rapidminer的操作接口跟分析方法。本篇论文采用rapidminer的原因,主要是因为它拥有非常便捷的图形化接口,而且使用者在操作上不需要再额外去学习其它的程序语法,只需要透过选取组件以及设定参数的方式就可以完成。而且在分析结果的显示上也非常的多样化,可以让使用者自行选择要观看哪一种图形显示分析的结果。

1数据探勘流程探讨。

1.1资料清除。

是过滤掉数据当中的那些噪声和无法判别的资料跟不一致的数据,保留可用的且有效的数据。

1.2数据的整合。

不一定都来自相同的一个数据库,所以必须做数据的整合,将来自不同数据库的数据整合处理完后处理在我们的数据仓储。

1.3数据选择。

在数据探勘中是一个相当重要的环节,选到有用的数据可以提高分析预测的准确度,但是选到无用的数据却可能会拉低分析预测的准确度,所以在做数据的选择时必须先对这些数据有一定的认识,才能做出正确的选择。

1.4数据转换。

由于人类和计算机的沟通的语言不同,所以当我们要让计算机来处理事情时,必须先将手头的数据转换成计算机可以识别的资料格式,或合并成数据探勘所需的数据形式来让计算机判读,像是执行汇总与聚合。

1.5数据探勘引擎。

数据探勘系统在数据探勘中算是非常重要的一个环节,因为它包含了探勘工作所需要的功能,像是特征化、相关系数与相互关系分析、判别、预测、群组分析、分群、离异值分析与演化分析等等。

1.6样式评估。

样式评估根据某些有趣度量,来辨认代表知识的有趣样式,也可以说是评估数据跟数据之间的关联性是否是有用的、重要的、是否正确。

1.7用户接口。

这个模块让用户可以与数据探勘系统进行沟通,他允许使用者透过设定数据探勘查询或工作与系统进行互动、提供讯息来帮助搜寻,对暂时数据探勘结果进行探索性数据探勘。

2数据探勘工具。

2.1rapidminer。

rapidminer开源式框架,支持各种类型的数据挖掘像是文本、网络、图像或是链接开放式的数据挖掘[1]。透过它复杂的图形用户接口,数据挖掘的過程可以更加的简洁且快速,直观地实现和执行,并且不需要额外的程序语言编辑技术。

2.2weka。

weka用于数据挖掘任务的算法的集合,算法可以直接应用在数据集上,也可以从自己设计的jave代码调用[2]。weka它包含了数据的预处理、分类、回归、聚类、关联规则和可视化的工具也就是图形接口,weka可以算是最古老,且最成功的开元数据挖掘库和软件,随后被集成为rapidminer和r的扩充软件,也因为rapidminer和r的出现,它们提供了使用者更加舒适且便利的使用环境,使得weka的用户开始大幅的下降。

2.3knime。

knime图形接口的自由开源信息汇整系统,它具有杰出的数据统合能力,并且可以运用在数据查询(datamining)、数据处理、数据分析、流程绘制以及流程规划与管理(workflow)等等各方面。

3数据探勘工具比较。

rapidminer:独立平台;使用者:学习者、高级用户、专业用户、企业用户;用户接口:主要是透过图形接口来做流程的设计,也可以同时开启多个窗口来做操作;功能:大于500种,可透过扩展来新增额外的功能,且可扩展weka和r作为它的扩充元件,并进行协同工作;操作接口:简洁易懂的操作接口,不需要额外的学习程序语言的编辑能力,使用者只需要透过拉取所需的原件并且将其连接起来即可使用,使用者可自由配置操作接口;支持的输入格式:csv、excel、xml、access、aml、arff、xrff、spss、sasdatabases、jdbc....;支持输出模型格式:模型可以导出为不同的档案格式,像是bmp、jpg、pdf、postscript、raw、xml等各种文件格式。

weka:独立开发平台;使用者:学习者、一般用户;用户接口:图形接口;功能:约500种;操作接口:有四种模式可供使用者选择使用,每种模式都各有其优缺点,使用者需挑选最合适的使用模式使用;支持的输入格式:arff、csv、c4.5、bsi、localfile、urls、jdbc..;支持输出模型格式:不支援。

knime:java平台;使用者:学习者、一般用户;用户接口:可在同一时间开启四个不同的视窗,用来做不同的功能;功能:约100种;操作接口:简洁易懂的使用接口,可以让使用者很容易得学会,也可以自由配置操作接口;支持的输入格式:arff,csv,pmml,localfiles,urls、jdbc..;支持输出模型格式:可以将档案汇出成压缩文件(zip),只有从knime导出的模型才可以再次汇入到knime中。

4结语。

现今是个信息科技的时代,几乎所有事情都是可以用数字和数据来解释的,每件事情的发生都会有它的前因后果,所以我们可以从这些数据当中找出这些因果关系,并且加以利用就可以预测出我们所要的结果,单单只有一大堆的数据是没用的,需要使用rapidminer这个数据挖掘分析软件,来从这些杂乱的数据库中萃取出我们所需要的信息,也就是从数据进行知识发掘,并且找出他们的相对应关系为我们使用。

参考文献。

[1]胡可云.数据挖掘理论与应用[m].清华大学出版社,2008.

摘要:我国大数据产业目前已进入快速推进阶段。对于企业来说,大数据是一项极其重要的战略资产。文章从大数据的起源及基本特征出发,分析大数据给企业财务信息管理带来的影响,并提出大数据时代加强企业财务信息管理的有效策略。

关键词:大数据;财务信息管理。

伴随互联网+、云计算、物联网、社交网络平台、传感技术等新兴技术与服务的出现,人类社会的数据种类和规模正以前所未有的速度呈爆发式增长和累积。据市场调研机构idc预计,未来全球数据总量年增长率将维持在50%左右,到2020年,全球数据总量将达到40zb,其中我国数据量将达到8.6zb,是2013年的10倍。海量数据的产生已经完全不受时间、地点的限制,其规模效应给数据存储、管理以及数据分析带来了极大的挑战。

大数据产生经历了被动-主动-自动三个发展阶段。第一阶段是数据库技术的出现。数据库技术被广泛应用于运营系统,数据伴随着系统的运转产生并被记录下来。这种数据的产生是被动的;第二阶段是互联网技术的诞生。新型社交平台的开发与各类便携式移动设备的使用,给人们更多的表达个人想法的途径与机会,这个阶段数据的产生方式是主动的;第三阶段是感知式系统的广泛应用。装配微型传感器的设备被广泛布置于社会的各个角落,这些设备源源不断记录下大量的新数据。这种数据的产生是自动的。这些被动-主动-自动记录与存储的数据共同构成了大数据的数据源。

关于大数据的特征,在国外大数据研究先河之作的《大数据时代:生活、工作与思维的大变革》一书中,作者指出,大数据是以4v为基本特征的数据集,即规模性(volume)、多样性(variety)、高速性(velocity)、价值性(value)。而ibm认为,大数据还必然具有真实性(veracity)。维基百科则通过简单明了的描述,对大数据进行定义:大数据是指利用常用软件工具捕获、管理和处理数据所耗时间超过可容忍时间的数据集。2017年国际电信联盟首次以大数据作为世界电信日主题,提出了“发展大数据,扩大影响力”。

企业财务信息管理起源于16世纪初的西方资本主义萌芽时期,早期并没有形成专业、独立的财务信息管理系统。企业的业务单一,信息资料也比较笼统、简单。随着20世纪初期工业革命的成功,公司制企业迅速发展并成为主要的企业组织形式,财务管理和财务信息的重要性日益突出,财务管理理论、制度、法规逐步完善。政策法规对财务信息有了规范性的要求,甚至对财务信息的披露、存档时间、保存形式有了详细的规定。到20世纪90年代,微型计算机应用逐渐普及,财务信息由传统手工编制过渡到手工+计算机辅助编制。随着计算机应用软件技术的进步,专业性的财务软件逐步代替了手工记账方式,进入财务电算化时代。当前,随着互联网和云存储、指纹加密、人脸识别等信息技术的兴起,云算盘、精斗云、云账房等新型财信息管理系统已开始得到广泛应用。

在企业财务信息管理中,数据来源的真实、有效、可验证性,数据采集的及时性、数据与本企业经营决策的相关性,数据的可计量性等是企业做出正确经营决策和投资参照的重要基础,为明确企业财务现状和运营前景提供依据;先进设备与技术的应用,是企业财务信息管理的有力支撑;而信息管理制度及人才队伍的建设,更是企业财务信息管理的关键所在。在大数据时代,财务数据,设备与技术,制度与人才多项因素紧密相结合,对于促进企业快速、良性发展有着重要的意义。

1、财务信息来源增加。

在计划经济时代,财务信息最主要的来源是各项经营的收支,并以货币计量方式表达。在大数据时代,除了传统的纸质或电子形式存在的文字、表格,电子设备、传感器、刷卡机、收款机、网站浏览点击行为、电子地图、社交网络媒体互动等设施与平台记录下来的数据与信息都可成为影响企业经营决策的信息源。

2、财务信息类型增多。

传统财务信息管理主要是以货币形式出现的跟收入与支出相关的数据,信息类型单一。而大数据的基本特征之一是信息类型繁多,涵盖了文本、音频、图片、视频、模拟信号等。信息整合难度加大。

3、财务管理职能前置。

传统的财务管理是事后管理,且局限于对现有数据进行简单的统计分析、查询。大数据的应用能够对企业经营情况进行实时分析和及时预测,提供更具时效性、指标多样化、更贴近经营管理需求的财务管理动态分析报告。财务管理的职能前置到市场预测、产品设计、供应链建设等价值规划阶段,财务体系由核算型向价值型转变。

1、提高财务信息质量。

大数据时代,海量数据的价值性呈现低密度,高附加值特点。单个数据看起来价值很低,但同类型的数据规模增加到一定数量,就会有很高的商业价值,对企业经营决策的指导力越强。当前,财务信息来源可分为二个方面:一是企业经营过程中产生的信息,这类信息属于内部数据。除日常收支外,还应括用户注册信息、浏览记录、定位记录等;也包括构成产品价值链的各个环节产生的数据,比如研发记录、生产作业记录、采购过程动态监控记录、物资出入库数据、销售业务数据等;还包括人事、战略、公共策略、专业知识库、企业文化等非结构化信息数据。二是本行业及跨行业相关数据信息,这类信息属于外部数据。外部数据应注重从目标人群、行业、大环境等方面收集。伴随着各种随身设备、物联网、移动互联网等技术的发展,人成为了移动互联网的核心网络节点,通过用户点击行为、电子地图、社交网络行为等数据,可以对目标人群进行有效分析。行业数据既包括本行业的产品种类、销售状况、研发趋势、竞争对手情况等,还包括跨行业的关联性信息,以全面性提高数据的准确度和价值。大环境指所处社会的经济、政治、法律等环境。国务院《促进大数据发展行动纲要》提出要稳步推动公共数据资源开放,这将成为重要的外部数据来源。

2、强化财务信息整合。

大数据搜集,重点不在于占有,而在于利用。而要利用好数量庞大,来源广泛,格式多样的财务信息数据,就必须对其进行实时整合,存储与管理。其方法主要是分类,聚类,存储。分类是找出大数据中的一类数据对象的共同点,通过分类模型将其划分为不同的类。同一类数据由于具有不同特征,可以被分到多个类别中去。聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大。存储则是以根据财务管理需要将大数据划分成分布式存储模块,如生产计划模块、销售管理模块、会计核算模块、资产管理模块、业绩评价模块和企业间关系模块等,以便数据管理和使用。

参考文献。

[2]东梅.论财会信息的现代化管理[j].北方经贸,2013(2)。

[3]何冰.大数据会计与财务信息相关性研究[j].会计之友,2017(7)。

[4]程平.云會计环境下人、数据和系统对会计信息质量的影响[j].重庆理工大学学报(社会科学版),2016(7)。

精准扶贫是政府提出的扶贫政策,其目的在于帮助贫困地区脱贫。精准扶贫中的扶贫资金,不仅涉及到政府管理部门,还涉及到社会各界及贫困地区经济发展,所以全面有效实施精准扶贫显得非常重。资料显示,大数据的应用能够使精准扶贫资金效益得到最大发挥,能够完善精准扶贫资金管理,使精准扶贫实现“真扶贫”。对此,笔者根据自己对“精准扶贫”及“大数据”的了解,分析了大数据助力精准扶贫的原理、问题及措施等。

“大数据”是社会经济及科学技术发展的产物,已经被应用于人们的生产及生活,对各大领域发展都起到了积极的推动作用。大数据是基于信息技术基础上对数据进行分析及整合的科学技术,其核心在于利用数据对信息进行分类、管理、整合、分析及处理,具有数据体量大、种类多、数据处理速度快及价值密度低等特点。

大数据助力精准扶贫时需要应用到信息技术,以获取准确的扶贫信息及数据;利用大数据能够对复杂的扶贫数据及信息进行分类、调整及分析,以了解多种影响因素,为精准扶贫的实施提供依据;当大数据被应用到精准扶贫时,需要相关部门对应用时产生的各种信息进行收录,并利用互联网进行整合、分析、挑选、筛查及汇总,以便于扶贫工作者利用这些数据对扶贫工作进行现实状况分析,最后找到有效的扶贫举措,提高扶贫决策的科学性及合理性,使精准扶贫得到实现。

第一,在大数据支持下,遥感技术、媒体信息技术、宽带网络技术等都能够应用到精准扶贫工作中,如可以用这些技术调查和分析扶贫产业、贫困人口和周边环境等数据。第二,利用大数据能够实现对农村基础设施与地理环境、交通等信息整合,从而全面了解贫困对象基本信息及生活需求等。第三,在大数据支持下能够了解贫困地区的人口及经济水平等信息,为精准扶贫工作提供重要依据。

第一,对贫困群体的精准识别基础工作不扎实,导致一些非贫困群体享受到帮扶待遇。第二,精准扶贫管理部门及相关工作者的职责界定不清晰,且资金审批、拨付等工作手续繁多,降低了扶贫工作效率。第三,没有按照国家相关规定及实际需要管理扶贫资金,导致部分扶贫资金被骗取和套取。

(一)对扶贫对象进行精准定位。第一,利用大数据下的媒体信息技术、通信技术及计算机技术等对贫困地区的人口进行调查,并确定符合扶贫要求的人群。第二,利用计算机信息技术对贫困对象进行建档立卡,并构建贫困人口的基本信息库,信息录入包括扶贫对象的年龄、工作、性别、年收入及家庭人口数量等。第三,信息录入后还需要进行基层走访、信息核实汇总,以保证扶贫对象信息的真实性,减少非贫困群体骗取和套取扶贫资金。

(二)利用大数据对扶贫工作进行动态跟踪管理。第一,利用大数据下的信息技术、遥感技术及媒体信息技术等,构建动态识别系统,以实现对扶贫对象的高效管理,同时还能够收集和分析相关数据,从而优化贫困户识别系统,提高精准扶贫工作质量及效率。第二,利用计算机信息技术及通信技术等,构建扶贫对象资源数据库,以提高识别系统准确性及扶贫对象信息数据完整性。第三,进行动态管理时,不仅需要对扶贫对象的基本信息进行动态监察,还需要管理扶贫资金流向和追踪扶贫资金使用方向等,以保证扶贫资金切实应用到扶贫对象身上。第四,通过实时更新扶贫对象信息系统,了解扶贫对象是否已经脱贫、是否进入帮扶范围等动态,以保证精准扶贫得到全面贯彻和实施。

(三)利用“大数据”预测贫困需求。第一,利用大数据下的数学方法来定位扶贫方向,并分析扶贫对象实际需求。第二,利用大数据对扶贫对象的基本信息进行分析,并利用数学法计算贫困事情发生率,以了解扶贫对象的贫困需求,从而制定具有针对性的扶贫对策。第三,利用大数据中的遥感技术、媒体信息技术等构建扶贫资金管理系统及监督系统,以实时了解扶贫资金的取向及利用率,以保证扶贫资金能够真的解决扶贫对象的实际问题,减少资金浪费,最终提高精准扶贫工作质量及效率。另外,在精准扶贫中还需要注意以下两点:第一,实行脱贫工作责任制,保证扶贫工作执行力。第二,积极转变贫困人口的思想,引导贫困人口通过自身努力实现小康生活。

总之,精准扶贫是针对我国贫困地区提出的扶贫政策,已经在很多贫困地区得到贯彻,而大数据则能够提高精准扶贫工作质量及效率,使贫困地区脱贫速度加快,加快我国小康社会发展。基于此,上文先简单概述了大数据,然后分析了大数据助力精准扶贫的原理以及对精准扶贫的技术支持,并探讨了精准扶贫中存在的问题,最后分析了大数据有效助力精准扶贫的措施。

【参考文献】。

[1]解静静.大数据助力精准扶贫问题研究[j].江西农业,2019(14):131+135.

[3]李秀玲.大数据助力精准扶贫[j].中国国际财经(中英文),2018(07):197.

大数据论文篇二

随着时代的快速发展,招标代理企业的信息化进程是未来社会需求的必然产物,所以,企业只有不断提升信息化建设的速度、提高自动化运营的效率,才能与时代的发展保持一致,以免被社会所摒弃。在招标代理企业的信息化管理过程中,还必须引进先进的管理观念、高质量的人力资源以及科学的管理模式等。

信息化;招标代理;企业管理。

第一,重视程度不够。由于高校对档案管理重视程度不够,在档案管理工作中,沿用传统的工作模式,对档案进行人工检索、整理、立卷和归档。即使大部分高校引进了先进的计算机设备,但是仍然只是发挥基本的输入、输出功能。由于缺乏现代化的管理系统,使得高校的档案管理工作繁琐,效率低下,限制了档案管理的价值。教师及学生的档案采集不全,档案卷内目录填写不完整,档案序号、文件编号、责任者、卷内文件的起始时间等信息有遗漏,档案文件保密级别不限定。第二,从事档案管理的人员素质不够。部分高校没有严格按照规定,完成档案管理工作,甚至缺乏专门的档案管理,只是简单的将档案堆在墙角里,使得档案丢失,这给档案查找工作带来非常大的困难。而且从事档案管理的人员,大部分是为了解决高校代课老师或教授配偶的工作,临时安排的,他们大部分人员缺乏计算机操作技能,不能利用计算机技术对档案信息进行开发和研究,并且缺乏工作积极性。第三,档案管理平台不健全。近些年来,高校电子文档、表格、音频、视频等各种数据信息,种类繁杂,这些庞大的数据信息难以有效的管理及存储。高校档案数据资源不断扩张,若不引入虚拟云存储技术,就有可能引发资源存储容量不够,导致数据库膨胀危险。

大数据的意义不是数据信息庞大,而是对数据信息进行高质量的处理。面对大数据时代的到来,高校如何在招生、教学、管理、就业方面进行大数据整合和管理,为高校的发展提供技术支持,是学校发展的重点工作。目前,很多学校已经建立了信息门户、统一用户管理与身份认证、综合信息服务门户,已经在信息管理中取得了进步,但是目前高校档案管理仍存在很多挑战。第一,组织维度。高校内各个部门应该优势互补,实现不同类型的大数据资源的优质整合。例如在高校内各部门建立数据管理机构、将数据整合和管理常态化,该机构由各个部门分管领导直接负责,协调部门内部事务,并将数据整合工作纳入年终评价体系,保障数据整合工作的效果。为加强高校档案管理,建议高校成立活动领导小组和工作小组。如下:其一,领导小组。组长;副组长;成员;职责;其二,工作小组。组长;副组长;成员;职责:统筹安排档案管理,研究制定管理措施;负责对档案信息进行协调、监督、考核。工作小组办公室设在公司后勤,负责日常工作联系及相关组织工作。第二,数据维度。高校档案来源丰富,包括教师和学生的人事档案、学籍档案、医疗保健档案、试题库、学校的基建档案、学校的资产档案、财务原始报销凭证、公文、电子邮件等。在档案大数据应用时,要将档案资源进行数据模型的转换,将二维的信息转换为多维的模型。第三,技术维度。在高校大数据时代,信息应用服务引领高校档案由常规分析向广度、深度分析转变。师生用户可以共享档案信息,并从海量档案信息中,挖掘出自己可用的信息,并从这些信息资源中进行价值判断和趋势分析,找出用户和档案之间的逻辑关系。4g移动通信终端、云技术与云存储服务、校园app等媒介渠道的引入,可以解决档案资源存储的问题。

第一,增强服务意识,提高服务水平,争取领导重视。大数据时代的来临,档案管理工作会面临许多新情况、新特点、新问题。实现现代化的管理,需要提高领导干部的档案意识,配备先进的设备,实现档案管理的现代化,网络化。第二,加强档案管理教育培训,提高管理人员的综合素质。大数据的管理不在是传统的简单数据和信息的归集,在信息化管理工作中,提高管理人员的素质是有必要的。加强人才培养,实现竞争上岗,培训上岗,加强业务宣贯,为档案管理创造一个新台阶。第三,提高档案管理信息化利用水平。引进现代化档案管理设备,用于快速档案查阅、检索、分析,提高工作效率,实现档案管理的现代化办公。一是加大资金投入,不断完善档案信息数据库,不断摸索档案应用软件和实际工作的结合,建立可行的档案信息系统,提高档案数据的实用性,使得档案查阅更快捷、更方便、更可靠。二是建立规范的制度保障体系,提高信息化管理的技术水平。

今年两会,大数据第一次出现在政府的工作报告中,这表明,大数据已经上升到国家层面。为了适应大数据时期,档案管理工作对管理人员的要求越来越高,学习现代计算机技术、网络技术、多媒体技术,跟上当代时代的节拍,对高校的发展有着重要的意义。

作者:张贤恩高秀英单位:枣庄市团校。

[1]杨似海,闫其春.大数据背景下的高校图书馆档案管理策略研究[j].四川图书馆学报,2016,4(35):81.

大数据论文篇三

在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。

2。2开发与内容的管理形式。

在不断提高大数据时代的大数据管理形式的过程中,可以从两个方面进行,一是大数据开发管理,二是内容管理。其中大数据开发管理注重于大数据管理的定义,和管理解决策略,对其大数据的存在价值,进行有效的开发。换句话说,其实也就是在大数据时代的大数据管理的过程中,对其管理形式的开发,对大数据的功能和价值,进行充分的理解。

大数据时代的大数据管理中的内容管理是指:企业对大数据进行不断的获取、使用、存储、维护等工作活动。因此,传统的大数据时代的大数据管理形式,已经无法满足对这个时代发展需求。因此,在时代快速发发展的推动下,要对开发管理和内容管理,进行全面的创新和设计,对需要专门设定的管理形式,要给予高度的重视,可以利用的集合型的保存形式,进行全面的保存。

其实,大数据时代的大数据管理主要是为企业提供重要的发展方向,为企业提供重要的价值信息。大数据时代的大数据管理在数据应用和开发的过程中,起到了重要的衔接作用,也为我国信息技术的发展,打下了坚实的基础。

在大数据时代的大数据管理的过程中,数据框架管理起到了重要的作用,并且与大数据开发的过程中,有很多相似的地方。在传统的大数据时代的大数据管理的过程中,对其数据的开发、处理、保存等形式,都受到了一定程度上的限制。因此,在对大数据时代的大数据架构管理的过程中,对其操作形式,进行了全面的管理创新,避免受到范围的限制。另外,随着大数据不断的增加,大数据构架管理可以根据大数据的用途,质量良好的应用形态。例如:社交网络等形式。

与此同时,在最近几年的发展中,大数据时代的大数据管理形式,也面临着新的挑战基机遇。以此,只有对大数据时代的大数据管理形式,对个人信息、隐私等进行全面的管理,避免个人信息、隐私等发生泄露、不对称等现象的发生,这样不仅仅企业在发展的过程中,提供了最大程度上的安全保障,也为大数据时代的发展,带来了新的发展篇章。

3结语。

综上所述,大数据时代是信息技术时代不断发展的产物,不管对我国经济的发展,还是人们在日常工作、生活的过程中,都起到了重要的作用和意义。因此,本文对大数据时代的大数据管理发展的历程进行了简要的分析,并对大数据时代的大数据管理形式,提出了一些可参考性的建议,只有对大数据时代的大数据管理形式,进行不断的创新,对大数据时代的大数据管理框架,进行不断的构建,也只有这样的才能在最大程度上促进了我国信息技术的发展,也为我国各行各业的发展,提供了重要的发展方向,对我国经济的发展,也起到了推动性的作用。

大数据论文篇四

探究式教学法是教师在教学过程中以问题为教学研究对象,组织教学内容,使学生通过对问题的了解、资料查询、阅读、思考、研究、探讨、交流和听讲,学会获取知识和应用知识,收集和辨析有效数据,系统地分析问题,获得解决问题的答案,并进行交流、评价的一种教学方法。其核心内容是通过问题的设定进而激发学生的学习热情,变被动为主动,把学生真正当成教学主体,培养学生养成创新思维模式。在摸索和探究中不断前行,从而系统地掌握课程知识内容并形成完整知识体系。

统计学原理课属于经济与管理类专业的一门必修基础课程。对构建学生基本知识体系,逐步形成分析和解决问题的方法体系尤为重要。然而该课程内容较多,包括了统计工作过程、综合指标体系、动态数列分析、指数分析、抽样调查推断、统计预测等多项内容。每一项内容均由完整的理论知识和独特的方法构成。知识点较多且晦涩难懂,学生不易理解掌握。尤其在以往的传统教学模式下,老师卖力地讲,拼命地试图将理论知识与生产生活实践相结合,却始终无法有效激发学生的学习热情。最终是“教师讲得累、学生打瞌睡”。鉴于此,我们结合经济与管理专业的非统计类专业特点,在我校四个经济与管理类专业的统计学原理教学中逐步引入“探究式教学”方法,把教学的主体定位到学生,充分挖掘学生的主观能动潜力,拓展学生的创新思维模式,增加学生实际动手能力。把教学课堂变成探究讨论场所,让传统的教学活动重新激起一个又一个的思维涟漪,收到了较好的教学效果。

一探究式教学法在统计学原理课程中的实施环节。

1问题选取。

要依据教学大纲的定位,同时又要结合非统计专业的现有实际,结合我校应用型本科的基本定位,选择难易适中且和工作实践紧密结合的内容。做到由易到难,逐渐加大难度,稳步推进,慢慢形成学生的探究思维定式。

在实施探究式教学的初期阶段,应选取单一的并能够在较短时间内完成的问题。最好是能够当堂形成结论且给学生较深的印象。随着探究问题的不断深入,结合教学大纲,问题的.选取进一步深化,逐步设置有一定探究压力但系统性不强并限定探究学习难度的问题。此时可以按照不同的抽样标准实施抽样,让各抽样小组分别观察其组内的方差水平。在此基础上一旦实施整群抽样,则误差水平可能的变动趋向。也可以就静态指标和动态指标的特点提出问题,让学生分别去对应会计课程的存量指标和流量指标,以学科之间的交叉和连贯激发学生的探究热情。等到学生逐步适应探究式学习这一新的学习模式后,教师就可以布置系统的、需要学生分组分任务在较长时间内才能完成的任务。

2布置问题。

将选取的问题布置给各个小组。小组根据问题的大小与多寡,通常5~6人为一个小组。对于较单一的问题,可以多分几个组,各组的问题不强调其唯一性,可以重复,以便于比较不同小组的完成质量。对于较为复杂的问题,可根据问题的数量和工作任务情况,先确定各组组长(初期组长可由教师根据学生的综合能力统一指定,但随着探究活动的逐步开展,组长应鼓励个人报名或学生推荐),然后由学生根据自己的知识侧重和个人喜好选择小组成员。每一个小组承担不同的探究任务。但无论问题难易程度如何,都必须确保每一个学生分担不同的探究任务,不允许有学生轮空,也禁止探究能力较强的学生大包大揽(但不排除必要的协作)。

3迅速完成组内分工。

各组领取任务后,在较短时间内由组长在本组内根据个人的特长确定组内分工(3~5分钟即可)。制定抽样方案、实施抽样、搜集整理数据、查阅资料、分析推断、撰写报告等。对于具有共性并较为重要的知识点,应要求每一个学生都独自完成,不因分工而隔断知识体系。

4收集分工情况,据此串讲知识点,引导学生的工作方向。

教师可收集各组分工情况的书面结果,根据分工结果分别讲授各方面、各环节涉及的知识内容。讲解应详略得当,有针对性,可以打破书本固有的知识点顺序。告诉学生在各自的工作中可能涉猎的知识内容,资料查找的方向以及分析解决问题要用到的方法。说到统计指数,涉及同度量因素,就涉及了物量指标和价值指标问题,涉及派氏、拉氏指数的选取,常用的cpi确定方法同样会牵扯到基期的选择、权数的确定。因而鼓励学生去查找相应的文献资料,并进一步思索可能出现的新问题。拉氏、派氏指数分别代表了哪一种思维定势和探究趋向?指数体系的确立基于什么考量和出发点?指数体系的确立和因素分析的实际意义在哪里?等等。这种串讲,既为学生指明了工作的方向,帮助学生打开思路,同时又告知了基本的分析方法。

5文献检索,初步探究。

学生根据教师的点拨,依据各自工作任务,分头查阅相关文献资料。指导学生利用图书馆、互联网查阅相关的统计公报、统计年鉴、报纸杂志和相关学科的理论知识。并在此基础上对所持问题进行初步探究。资料文献的查阅也是一个循序渐进的过程。学生很可能在探究初期只是查阅了和问题直接相关的表象资料,而忽略了深层探究所需数据的收集,结果出现“头疼医头、脚疼医脚”的局面。

6集中讨论,相互激励,深入探究。

各小组成员在收集相关资料并形成初步意见后,可及时组织大家集中讨论。每个人均可阐述自己观点,对所选用数据资料的可信度,使用方法是否得当等,听取他人意见。讨论过程中可有效实施相互的智力激励,迸发出灵感火花,为进一步发现深层次问题,探究和解决深层问题打下良好基础。

7课堂交流、汇报。

学生在组内讨论探究的基础上,各自完成分工任务。形成统一意见后,应将成果制作成ppt文档。在规定时间内由教师组织集中进行课堂交流、汇报。由各组主讲人通过ppt演示本组工作过程和工作成果,允许组内其他成员加以补充完善。

8教师讲评。

根据各组汇报结果,教师要进行及时讲评。既要对学生的分析运用能力给予充分肯定,又要对其在方法、思路上存在的问题给予指正。指导学生及时转换思路,回归正确的探究方向。探究式教学虽能够有效激发学生的探究热情,但由于学生认识问题和所学知识的局限性,极易形成学生“钻进去、出不来”。问题的叠加效应可能会打击学生探究热情,或导致“不可知论”。教师的及时讲评和肯定,是进一步引导学生回归探究学习正途的指南针。

二探究式教学法在应用中应注意的几个问题。

探究式教学可以很好地调动学生的学习积极性,最大程度激发学生的探究创新活力,提升教学质量和强化教学效果。但是在实际应用时必须注意以下几个问题。

探究式教学从表面看是把探究学习的主体转化为学生,但实质上绳子的另一端是教师。教师的备课、引导、启发在整个教学环节中起着至关重要的作用。教师的备课任务不仅不能削弱,而且更应该得到加强。从问题的选取设定到最后的验收讲评,教学的主线仍然紧握在教师手中。哪些问题可以选来作为探究目标,什么样的问题可以实施分组讨论、协作完成,都需要教师精心设计。这就需要教师具备完备的知识体系和对教学方法的综合把控能力。需要教师不断充电并择机走向生产实践一线,了解学科发展动态,始终站在学术发展前沿。

2探究式教学需要教师的及时引导和启发。

在实施这种教学方法的初期,由于学生对新的教学模式一时难以适应,会因各小组组织不力,学生无从下手,不了解整个教学活动的核心内容,而产生畏惧情绪。因而教师要及时地加以引导,为学生指明工作的方向并及时答疑解惑。教师可以利用常规教学课堂平台,也可以利用互联网的相应沟通平台或手机飞信、微信等方式,收集学生意见和问题并及时给予指导,将学生引导到独立探究、合作探究的学习环境中,逐步形成探究式学习的良好氛围。

3探究式教学仍需要传统的课堂讲授模式加以配合。

对于学科的基础知识、基本概念我们很难将之归为探究式问题。加之学生在接收一门新的课程知识时往往出现短暂的不适应。因而教师仍要利用讲堂这一平台向学生讲解基础知识。教师在讲授这些内容的时候应着力使用启发式教学方法,多列举实例,多提出问题,逐步培养学生思考问题的能力,并产生探究问题的冲动和欲望。进而实现从传统教学模式向探究式教学的自然过渡。

4探究式教学课后占用时间较多,容易加大学生的学习负担。

教师要合理安排探究式教学内容。挑选有针对性和实际意义的内容作为选题,并适度调整教材体系中的相关章节。做到教学有重点、探究有实效。把一些容易理解和掌握的知识交给学生自我消化,或由教师使用传统方式串讲带过,把核心知识且具有探究的条件和意义的章节认真组织学生探究学习。避免全面开花、拘于形式,结果造成学生到最后劳神费力、难有所获。

统计学原理课程内容较多,结构复杂且难懂。但却是经济与管理类专业学生必修的一门方法论学科,在整个学科知识体系中占有重要位置。传统的课堂讲授模式无法激发学生的学习热情,很难收到良好的教学效果。实施探究式教学法,可以充分调动学生主观能动性,培养学生学习探究的良好习惯,为今后的实际工作和终身学习奠定基础。教师要先弄清楚探究式教学的真正意义,对探究式教学的实施环节、问题的选取、节奏的把控、效果的评定有着全面而深刻的认识。欲使探究式教学能够实现预期教学目的而非只是“标新立异”,则需要教师不断充实完善自我,做到高屋建瓴、游刃有余。

大数据论文篇五

如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作――舍恩佰格的《大数据时代》。维克托・迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文・凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据论文篇六

在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。

大数据论文篇七

摘要:随着就业信息化建设的发展,信息技术已经被广泛应用于高校毕业生就业中,就业信息化建设是近年来大学生就业问题关注和努力的重点方向。但目前就业信息化建设中依然存在很多不足,如信息整合程度低、信息利用率低下、信息平台功能不完善、信息交流不足、网络求职成功率偏低等。在当今大数据时代背景下,就业信息化建设迎来了新的发展机遇。

关键词:大数据;信息化;就业。

随着互联网的发展,信息技术被广泛用于生活、工作、学习、服务、交通、生产等各个领域,改变了世界,为人类带来了诸多便利。就业信息化建设对我国经济社会发展稳定具有重大战略意义。在各种信息化平台的帮助下,大学生能够更容易、更便捷地找到就业岗位,在我国高校扩招造成毕业生数量逐年递增的情况下,极大地缓解了社会的就业压力,为我国经济建设提供了各方面的劳动力和人才。因此国家高度重视就业信息化建设,21世纪以来,党中央、国务院、教育部多次下达指令,要求大力开展各项就业信息化建设工作。

一、目前我国就业信息化建设的现状及不足。

经过十几年的努力,目前我国就业信息化建设已经基本完善,形成了以各级政府就业指导部门、用人单位、高校、毕业生为核心的就业信息化体系,通过各种信息化平台,把各级政府就业指导部门、用人单位、高校、毕业生连接起来。各级政府就业指导部门网络平台、各高校就业指导中心网站、各种招聘信息、毕业生求职信息等信息化要素的相互作用,实现大学生完成就业。但目前我国就业信息化建设依然存在很多不足,主要有一下几点:

(1)信息整合程度低、信息利用率低下。目前已有的就业信息平台数量很多,各种就业平台发布的信息数量非常巨大,但信息分布松散,整合程度较低。比如,同一岗位的招聘信息,可能会在多个不同的招聘网站上看到,求职者需要到多个求职网站去搜寻。这就增加了求职者获得求职信息的时间成本,导致信息利用率低下。

(2)信息化建设视野狭窄,平台之间联系不够,信息交流不足。政府部门在信息化建设统一规划方面做得不好,没有从高的层面进行部署,建设视野不够宽广。各个信息平台一叶障目,平台之间的联系不够紧密,最终导致了信息交流不足。

(3)信息平台功能不完善,不能更好服务就业工作。目前大部分的信息平台以发布就业信息为主,一些平台具备网络简历投递的功能,但这些对于实现求职者顺利就业是不够的。求职者需要通过信息化平台了解到当前就业形势、各行业就业现状、薪酬水平、地域差异、前景分析等信息,需要得到实时疑问解答,进行广泛交流,这些都是当前的信息平台所缺乏的功能。

(4)网络求职成功率不高。十几年来信息化建设促进了大学生就业工作的开展,越来越多的求职者在网上进行简历投递等求职活动,但不可否认的一个事实是招聘会、宣讲会、人才市场对于就业依然作用突出。调查显示,很多求职者认为网络对于求职的最大帮助是提供便捷、高效、廉价的就业信息,而网络招聘中简历投递成功率太低,所以求职者更愿意到招聘现场去求职,各地招聘现场的火爆状况就是很好的证明。这也说明了目前信息化对求职的帮助仍然处于较低的水平。

随着信息化技术的发展,家用电脑、智能手机、宽带技术、移动互联网、物联网等数据来源及数据承载方式的高速发展,全球的信息数据量出现了跨越式增长,信息大爆炸成了时代的特征,大数据时代已经正式到来[1]。

大数据(bigdata,megadata),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产[2]。在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的特点可以概括为4v:volume(大量)、velocity(高速)、variety(多样)、value(价值)。大数据最核心的价值就是在于对于海量数据进行存储和分析。大数据技术可以从各种各样类型的数据中,快速获得有价值的信息。

利用大数据技术可以解决目前就业信息化建设中存在的种种不足,进一步加强就业信息化建设,更好帮助大学毕业生就业。

(1)加强预测分析,更好开展就业指导工作,加强就业针对性。大数据技术通过对国内国际形势、当前经济发展、过往就业信息、地域信息等大量数据进行分析,预测就业形势、各行业就业前景、薪酬水平、地域竞争状况、行业前景等能内容进行分析,给出可靠的预测数据,便于政府就业指导部门更好安排部署就业工作;企业可以合理安排招聘岗位,选择适合的求职者,避免员工频繁跳槽现象,节约招聘成本;高校可以更好地开展大学生就业指导工作,大学毕业生根据自己专业、兴趣、爱好、特长、个人发展规划,有针对性地明确求职目标,进行充分的求职准备。这些能加强各方面开展就业工作的针对性。

(2)高度整合信息,紧密联系信息平台,加强信息交流,提高信息利用效率。通过对大量信息的收集和分析,大数据平台可以完成信息的高度整合,使各个信息平台紧密联系在一起,平台之间的信息可以实现快速交流,大幅度提高信息利用效率。在大数据的帮助下,求职者搜寻求职信息时,重复的信息可以自动合并,同一类信息可以全部展现,信息获取效率得以提高;求职者的简历、求职信等求职信息可以储存在云端,在需要时随时可用于不同的网络招聘,这样求职者可以省去大量重复写简历的时间;通过大数据综合分析,网络上的虚假招聘信息可以迅速被识别剔除,信息审核得以强化,避免求职者上当受骗。

(3)完善信息平台功能,扩展信息平台种类,提高网络求职成功率。大数据技术可以进一步完善各信息平台的功能。信息平台将不仅仅提供求职信息,还会增加就业分析预测、实时交流、就业指导、网络简历投递和筛选、视频面试等功能。

随着大数据技术的发展,信息的传播已经不只是依赖电脑,智能手机、便携平板电脑、智能穿戴设备都成了信息传播媒介,信息平台也不再局限于互联网网站,qq、微信、微博等实时交流工具和各种app应用也成了新的信息平台,更加方便、快捷地发挥作用,借助于这些平台,求职者可以随时、随地进行信息浏览、投递简历、疑难询问、交流沟通等,企业hr可以随时发布信息、筛选简历、疑问解答、视频面试等,极大地提高求职的便捷性和成功率。

总而言之,大数据时代的到来,为以后的就业信息化建设提供了新的发展机遇和发展思路,充分利用大数据技术的各种优点和优势,就业信息化建设将更好服务于就业工作。

参考文献:

[2]杨旭,汤海京,丁刚毅.数据科学导论[m].北京理工大学出版社,2014.

大数据论文篇八

在当今科技发展迅猛的时代,大数据已成为不可忽视的重要资源。它为我们的生活带来了很多改变,也给企业、政府和个人提供了更多机会。通过对大数据的学习和实践,我意识到了大数据的重要性和潜力。在这篇文章中,我将从数据收集、数据分析、数据隐私、数据治理和数据应用五个方面分享我对大数据的心得体会。

首先,数据收集是进行大数据分析的基础。无论是企业、政府还是个人,我们都应该积极参与数据收集。在大数据时代,每个人都是潜在的数据生成源。企业可以通过设备和传感器收集销售数据和用户行为数据,政府可以利用数据收集来改善公共服务,个人可以通过社交媒体和移动应用来分享自己的数据。数据的多样性和数量越大,分析结果越准确,应用场景也会更多。

其次,对数据进行分析是利用大数据的核心。大数据分析可以帮助企业和政府发现隐藏的模式和趋势,为决策提供有力支持。在我们的日常生活中,大数据分析也是无处不在的。我们可以通过购物网站推荐来发现感兴趣的产品,通过社交媒体的算法来找到和我们兴趣相投的人。然而,大数据分析不仅仅是利用算法和工具,还需要人的智慧去理解数据背后的故事。

第三,数据隐私是大数据时代面临的主要问题之一。随着数据的不断增长,隐私问题也日益突出。个人数据的泄露可能导致信息被滥用,对个人和社会带来无法估量的风险。因此,数据隐私保护应该成为我们在使用大数据时考虑的重要因素。政府需要制定相应的法律和法规来保护个人隐私,企业需要建立严格的数据使用和保护机制,个人也应该提高自我保护意识,选择安全可靠的应用和平台。

第四,数据治理是保障数据质量和安全的重要手段。数据治理是一种组织和管理数据的方式,涉及到数据的标准化、清洗、分类和存储等方面。数据治理的目标是确保数据可靠和可用,提高数据价值和利用率。在数据治理过程中,需要建立明确的责任和权限,制定相应的规范和流程,采用合理的技术手段来保护数据的完整性和安全性。

最后,大数据的应用是实现数据价值的最终目标。大数据的应用可以涵盖各个领域,如金融、医疗、交通和教育等。通过大数据分析,金融机构可以预测风险,提高客户满意度;医疗机构可以个性化治疗,提高疗效;交通部门可以优化交通流量,减少拥堵;教育部门可以根据学生的兴趣和能力提供个性化教育。大数据的应用可以为企业提供竞争优势,为政府提供决策支持,为个人提供个性化服务。

综上所述,大数据是当今信息社会的重要资源,对企业、政府和个人都具有重要意义。通过对大数据的学习和实践,我深刻认识到了数据收集、数据分析、数据隐私、数据治理和数据应用的重要性和挑战。在未来的发展中,我们需要更加重视数据的收集和利用,同时加强对数据隐私的保护和数据治理的规范,以实现大数据的最大价值。

大数据论文篇九

随着信息时代的到来,人们生活中的各个方面都开始涌现出海量的数据。这些大数据以惊人的速度增长,使得人们需要运用更加高效的方法来处理和分析这些数据,从而获得有价值的信息和洞察。在我与大数据打交道的过程中,我深深领悟到了大数据的重要性和它对我们生活的影响力。在这篇文章中,我将分享我对大数据的心得体会。

首先,大数据为我们提供了更全面和准确的信息。在过去,我们往往只能凭经验和感觉来判断事物的发展趋势和决策的方向。然而,随着大数据的普及,我们可以通过收集、分析和挖掘大量的数据,了解事物的真相和本质。比如,在市场营销领域,大数据可以帮助企业分析用户购买行为、消费偏好和市场趋势,从而制定更加精准和有效的推广策略。在医疗健康领域,大数据可以帮助医生分析患者的病例和治疗效果,为患者提供更加个性化和有效的治疗方案。通过大数据,我们可以更加科学地进行决策和规划,使我们的行动更加明确和高效。

其次,大数据为我们提供了更深入和全面的洞察。传统的数据处理方法往往只能分析孤立的数据点,而难以发现数据之间的联系和规律。然而,大数据具有强大的处理能力,可以将各个领域的数据进行整合和分析,从而帮助我们发现隐藏在庞大数据中的规律和趋势。比如,交通领域的大数据可以帮助我们了解城市交通状况和交通拥堵的原因,从而优化交通管理和规划。而在科学研究领域,大数据可以帮助科学家们分析海量的实验数据,发现科学事实和新的知识。因此,只有运用大数据的方法,我们才能够获取到更加准确、全面和系统的洞察,为我们的工作和生活带来更大的价值。

第三,大数据为企业和组织提供了更广阔的发展空间。在信息时代,数据已经成为企业竞争的重要资源。通过收集和分析大数据,企业可以了解市场需求、优化产品和服务,并制定合适的商业策略。比如,Amazon通过分析用户购买记录和偏好,为用户推荐个性化的商品,提高销售效率和用户满意度。而在政府组织中,大数据可以帮助政府进行城市规划、资源分配和社会管理,提高行政效率和服务质量。此外,大数据还为创新提供了更多的可能性。通过挖掘大数据中的信息和资源,创业者可以发现新的商业机会和创新方向,为社会的发展带来新的动力和活力。

第四,大数据也带来了一系列的挑战和问题。首先,大数据的处理和分析需要高度的技术和运算能力。大数据往往以海量的形式存在,数据存储、处理和分析需要庞大的计算资源和算法模型。其次,大数据的安全和隐私问题也引起了人们的关注。随着大数据的应用,个人和机构的隐私面临着更大的风险,需要制定更加完善的数据保护和隐私政策。此外,大数据的分析和使用也需要遵守法律和伦理的规范,避免滥用和侵犯他人的权益。

综上所述,大数据对我们生活的影响力是巨大的。通过大数据的处理和分析,我们可以获得更全面、准确和深入的信息和洞察。大数据为企业和组织提供了更广阔的发展空间,也为创新提供了更多的可能性。然而,大数据的应用也面临着一系列的挑战和问题。因此,我们需要积极应对这些挑战,保障大数据的安全、隐私和合法性,从而更好地利用大数据的力量,为我们的社会和生活带来更大的进步和发展。

大数据论文篇十

大数据从被人们所熟知到现在各大领域的广泛应用,标志着人类已经正式走入“第三次工业革命”时代。大数据在营销领域的应用使传统的营销活动变得更加的科学化和个性化,本篇大数据论文的笔者认为,在享用大数据带来的便利同时,需要兼顾大数据带来的伦理问题。

近些年随着移动互联网、物联网、云计算的迅猛发展,it业又出现了一个新名词——大数据(bigdata),“大数据”(bigdata)的横空出世是it行业又一次颠覆性的技术变革,且已在各行各业逐渐形成燎原之势,大数据的出现不仅给当今世界带来了翻天覆地的变化,同时也潜移默化的影响着人们生活的各个领域。

对于大数据的概念,迄今为止仍然没有形成统一的准确定义,francisdiebold是第一个提出“大数据”术语的学者,他认为:大数据就是正在激增的数量和潜在的相关数据,主要是当今空前发展的数据记录和存储技术。而meta集团(现为gartner)的分析师douglaslaney()在研究报告中,就指出数量(volume)、速度(velocity)和种类(variety)的增加可能是未来的一大趋势。虽然这一描述最先并不是用来定义大数据的,但在此后的十年间很多企业如ibm和微软仍然使用这个“3vs”模型来描述大数据。对此也出现了一些不同的意见,大数据及其研究领域具有影响力的领导者的国际数据公司(idc)在20做的报告中定义大数据为:“大数据技术描述了新一代的技术和架构体系,通过高速采集、发现或分析,提取各种各样的大量数据的经济价值。”从这个定义来看,大数据的特点可以总结为4个v,即volume(数量),variety(种类),velocity(速度)和value(价值)。4vs和3vs的不同之处就是增加了一个价值,指出了大数据最为核心的问题就是如何从规模巨大、种类繁多、生成快速的数据集中挖掘价值。demauro,a-,greco,m-和grimaldi,m-()对大数据的定义进行了统一:大数据指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。由于利益相关者的角度不同,因此学者们对大数据定义的表述也不尽相同,但大数据的重要性却得到了一致的认同,即大数据在其数据量、数据复杂性和传播速度三大方面都显著的超出了传统的数据形态,也超出了现有的技术处理手段。

正是有了数据的爆炸式增长,大数据已经在学术领域、商业领域乃至政治领域都得到了密切的关注。《nature》出版了专刊“bigdata”,从互联网技术、网络经济学、超级计算、环境科学和生物医药等多个方面介绍了大数据带来的挑战。年《science》推出关于数据处理的专刊“dealingwithdata”,讨论了数据洪流(datadeluge)所带来的机遇,同时也指出如果能够有效地利用好这些数据,人们将会得到更多的机遇,并能对社会发展产生巨大的推动作用。

国外学者danielnunan()就指出了大数据可能会产生影响的五大领域:社交网、数据所有权、存储问题、数据收集、公众隐私,因此大数据时代各大领域都将迎来新一波的迅猛发展期,同时它也决定了未来商业的发展趋势,尤其在营销领域大数据与营销的结合更是颠覆了传统的营销模式。

2-1营销活动将更科学化。

大数据的特征是容量大、种类多、高速度和有价值,因此大数据时代的营销不再是基于经验和直觉,而是基于科学的数据分析进行精准营销。曾经有过一个经典的大数据案例讲的就是“啤酒与尿布”的故事,在20世纪末的美国沃尔玛超市中,超市的管理人员意外的发现两个毫无关联的物品啤酒和尿布会经常同时出现在一个购物篮中,后续研究发现原来是因为美国一般都是年轻的爸爸出来为小婴儿购买尿布,顺便为自己购买啤酒,当然其中就用到了商品间的关联算法,而大数据正是通过海量的数据来实现精准的营销为企业竞争赢得先机。

2-2营销活动将更个性化。

随着数据的挖掘、采集、分析等环节的效率不断地提高,大数据的大容量、高速度、多样性以及高价值四个特点使得个性化的营销服务成为可能。营销的最终目的就是能够准确的了解每一个潜在的或者现实的客户需求并为其提供满意的产品和服务从而实现利润最大化,而大数据恰好能够利用其显著的优势,从海量的数据中提取有用的信息,准确地把握客户的兴趣点,了解客户的个性偏好,因此大数据背景下利用网络技术平台提供个性化服务是未来的一大趋势。

2-3企业营销组织机构和人员工作职能将围绕数据展开。

大数据时代下对于企业来说数据是最重要最珍贵的资源,因而数据的收集和整理以及数据的分析和处理将是营销人员制胜的关键。因此营销人员的工作将更多的是围绕着数据的采集、分析和处理展开。在营销领域采用数据挖掘是营销发展到一定阶段的必然趋势,而数据挖掘技术的应用能对企业的营销管理带来很多显著的利益,因此未来企业的营销人员的职能会发生转变,以数据挖掘、分析为主的组织机构将会成为企业的重要职能部门。世界著名的管理咨询公司埃森哲和麦肯锡都先后发布报告称,数据科学家的需求将会持续扩大,未来如何培养高技能的数据人才会是各大数据业务公司的重中之重。

2-4营销活动将可预测。

大数据是一场技术性的革命,海量的数据资源使得营销管理开启量化的进程,而运用数据进行决策是大数据背景下营销模式的一个重要特征。未来企业的竞争将是数据的竞争,谁能挖掘潜在的客户掌握客户的需求谁将能取胜,因此企业营销活动的成败关键就在于是否能准确地判断顾客的价值,而大数据的出现使得营销管理活动能够实现精确的预测成为可能。大数据之“大”就是数据量大,能搜集全面和综合的数据,并再结合数据算法建模的使用,便能充分地挖掘数据间的相连性,从而来预测市场的发展趋势,帮助提升营销活动的'可预见性。

总之,大数据时代的到来给营销领域带来了巨大的商机。可正当人们还沉浸在大数据所带来的各种便利和价值的时候,有一个问题已慢慢引起了全世界的关注,即大数据营销活动中一些有悖于道德伦理问题的存在令人担忧。

3大数据时代面临的挑战。

3-1数据的质量问题和数据人才的缺乏。

大数据的“大”是指数据量大,但数据量大不一定代表信息量大或者数据的价值大,相反由于数据量太大容易造成很多繁杂无用的垃圾数据的泛滥。高质量的数据是大数据发挥效能的重要手段,因此如何应用相应的技术手段对大量的数据进行深加工成为企业发展的关键。同时由于大数据时代营销人员的职能已逐渐转化为数据相关的工作,而数据人才的缺乏也是当今营销领域的一大挑战,因此如何培养数据人才充分利用数据的挖掘采集和分析技术来获取高质量的数据信息是我们的当务之急。

3-2数据的复杂化难以管理。

当今世界对数据的争夺问题已日趋白热化,各大企业都为获取有效的数据信息来赢得竞争的优势。虽然数据就像黄金一样把它们放在一个数据库可以保证安全,但这却不是一个实际的处理方案,一方面没有那么大的内存去存储;另一方面由于数据的珍贵,每个企业都小心翼翼地将数据当作财产一样存储在不同的服务器上,彼此之间互不连通形成一个个“数据孤岛”。而大数据时代又需要广泛的研究数据间的相关性才能从中发现客观规律,需要个体和集体的配合才能实现数据的共享从而实现数据的价值最大化。

3-3公众和个人隐私问题日益凸显。

当今数据的收集和存储能力已远远超过了数据的利用率(jacobs,),而目前这两种能力还不能有效的结合,使得数据的利用率较低且数据的泛滥很可能会使得公众的隐私受到侵犯。在大数据的营销过程中很多用户相关的信息都是以数据的形式存储在电脑上,而互联网的广泛传播使得数据的隐私问题越来越令人担忧。例如,很多企业为了经济利益将用户的个人资料私自出售,甚至还有一些不法分子窃取用户的个人信息对用户进行诈骗等,这已给个人造成了严重的困扰。

3-4数据精准性与服务精准性不对称。

尽管大数据营销可以让企业了解客户的需求,但精准的数据不一定能全面把握客户的心理活动。比如说一个顾客一直徘徊在商场一楼的鞋子特价区,此时这个顾客的举动可能说明了这个顾客对鞋子是有需求的,但不能说明这个顾客一定是一个价格敏感者。尽管大数据的确能够发现、跟踪和分析消费者的每个显性变化,但却无法全面把握消费者的内心活动,因为顾客的购买心理本来就是一个“暗箱”,他的购买行为是由很多因素综合决定的,可能是心理,可能是价格,还有可能是环境因素,等等。因此尽管大数据能够提供精准的数字,但却很难提供精准的预测,这里面涉及了一个不可确定性因素,就是顾客的心理。

4大数据背景下营销领域伦理问题的解决途径。

大数据对于营销领域来说是一把双刃剑,既是机遇也是挑战。它既能给企业带来巨大的商业价值,有效地提升企业的竞争力,同时也可能因为安全隐患问题给社会带来极大的危害。因此,本文试着从国家、企业以及技术手段三个层面来探讨如何有效地规避大数据自身带来的伦理问题。

4-1国家应当制定相应的法律法规来约束不法行为。

由于我国相对于西方发达国家来说,大数据营销起步较晚,因此相关的法律法规还不是很健全,许多不法分子利用一些法律漏洞来窃取消费者的隐私、侵害消费者的利益。从宏观层面来说,国家是市场有序进行的保证,而法律是依靠国家的强制力来维护公共生活的秩序。因此国家应加强相关的法律法规的建设来严厉打击不法分子、保护消费者的隐私安全。

4-2通过行业自律来约束自身的伦理机制。

由于法律仅仅是外在的约束因素,而要从根本上解决问题还需要加强行业的内在自律性,加强企业的内在道德观念,自觉的遵守道德约束。而事实证明,企业通过建立消费者隐私的保护机制,依法保障消费者的合法权益,是解决这些伦理问题的源头。(3)利用技术手段解决自身的问题。大数据的安全隐患问题是由大数据发展过程中自发产生的,因此可以充分的利用技术的优势有效的规避这些问题。人的自律行为是需要相当大的决心的,因为往往拒绝不了利益的诱惑,而法律的制定往往是滞后于技术的进步,人们往往是等到出现了问题后才会想办法制定相关法律,事实上也正是因为技术的不完善才给了那些不法分子钻空子的机会,因此依靠技术自身的优势来解决大数据背景下营销伦理问题是最切实有效的。

5结论。

大数据与营销管理领域的结合也是时代发展的必然趋势,更是企业在激烈竞争下取胜的关键举措。与此同时,我们在享受大数据带来的巨大商业价值时,也应客观的认识到大数据时代的安全相比传统安全更加复杂,对此理应结合法律的强制措施和行业的自律以及技术的显著优势,来保障大数据背景下营销朝着正确的方向发展。

大数据论文篇十一

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的cio也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多it知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的bi,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧―。巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时bi的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查百度百科,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4v特点:volume、velocity、variety、veracity这个好像是ibm的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

3、大数据带来的影响。

1)预测未来书中以google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

大数据论文篇十二

大数据时代的来临,使企业进入战略绩效管理信息化时代加快了脚步,然而,企业cio在面对繁杂、庞大的数据信息时,如何做到价值最大化的被企业利用,为企业战略绩效管理系统服务,需要一套庞大、严谨的战略管理体系支撑,在以企业战略管理体系的框架支撑下,数据才能使管理系统如虎添翼,引领企业飞速发展。

研究esp系统发现,建立大数据时代下的战略绩效管理信息化系统,先要明确发展战略目标,在此基础上,为数据信息的价值实现构建管理体系框架,数据信息能否被有效利用取决于战略管理系统的体系设计。

大量的数据信息在全面、有序的企业战略管理框架中被归类、识别,并通过战略管理系统中的分析工具被分析、重置,再通过辅助保障系统将分析后的数据信息按流程、组织,系统的输送给终端。形成一整套企业战略管理信息化系统,以便于员工高效和正确的运用数据,真正实现数据可用性。

从管理信息化落地执行的角度看,esp的贡献在于能够帮助企业管理信息化高效的实现,全面落地、彻底执行并可视化监控和有效的评估,否则企业再好的战略、全面的管理体系落不了地、也不能产生很好的效果,更谈不上发展。

大数据论文篇十三

“除了上帝,任何人都必须用数据来说话。”――这是《大数据时代》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据时代》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,web3・0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前――美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的.文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据时代》就这样在坚持中溶入我的思想。

大数据论文篇十四

职责:

1、负责构建数据挖掘与数据分析体系,负责海量运营数据的分类汇总和分析研究;

3、负责数据管理团队的建设工作,有效领导数据分析与挖掘团队支持和推动业务发展;

4、协助完成业务关键目标指标制定、目标达成过程管理。

任职资格:

1、数学、统计学,计算机软件相关专业全日制本科及以上学历,至少4年相关工作经验;

4、对业务变化有敏锐的洞察力;能利用数据对于业务形态与商业模式有深入的理解;

5、数据敏感、善于创新、思维敏捷、精力充沛,沟通能力强,具备较强的团队合作精神并能够承受较大工作压力。

它山之石可以攻玉,以上就是为大家带来的6篇《大数据论文范文大数据论文范文大全》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

您可能关注的文档