2023年初中数学知识点总结思维导图 初中数学知识点总结(精选9篇)

  • 上传日期:2023-11-27 10:17:12 |
  • 笔舞 |
  • 7页

总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。那么我们该如何写一篇较为完美的总结呢?这里给大家分享一些最新的总结书范文,方便大家学习。

初中数学知识点总结思维导图篇一

1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径

4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)

补充:1、两条平行弦所夹的弧相等。

2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

1.数据13,10,12,8,7的平均数是10.

2.数据3,4,2,4,4的众数是4.

3.数据1,2,3,4,5的中位数是3.

1.大于0的数叫做正数。

2.在正数前面加上负号“-”的数叫做负数。

3.整数和分数统称为有理数。

4.人们通常用一条直线上的点表示数,这条直线叫做数轴。

5.在直线上任取一个点表示数0,这个点叫做原点。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7.由绝对值的定义可知:

一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

9.两个负数,绝对值大的反而小。

10.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13.有理数减法法则:减去一个数,等于加上这个数的相反数。

14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

15.有理数中仍然有:乘积是1的两个数互为倒数。

16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

初中数学知识点总结思维导图篇二

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

《数列》。

等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。

初中数学知识点总结思维导图篇三

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤。

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点总结思维导图篇四

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质。

(1)具有平行四边形的一切性质;。

(2)矩形的四个角都是直角;。

(3)矩形的对角线相等;。

(4)矩形是轴对称图形。

3、矩形的判定。

(1)有一个角是直角的平行四边形是矩形;。

(2)对角线相等的平行四边形是矩形。

(3)有三个角是直角的.四边形是矩形。

(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。

(5)对角线相等且互相平分的四边形是矩形。

4、矩形的面积。

s=长×宽=ab。

5、矩形的周长。

c=2(长+宽)=2(a+b)。

初中数学知识点总结思维导图篇五

1.充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。

2.知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。

3.让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。

4.注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。

知识要点:

整式的有关概念。

(1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。

(2)多项式:几个单项式的和叫做多项式。

初中数学知识点总结思维导图篇六

顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。

中位线概念。

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

初中数学知识点总结思维导图篇七

2过一点有且只有一条直线和已知直线垂直。

3过两点有且只有一条直线。

4两点之间线段最短。

5同角或等角的补角相等。

6直线外一点与直线上各点连接的所有线段中,垂线段最短。

7平行公理经过直线外一点,有且只有一条直线与这条直线平行。

8如果两条直线都和第三条直线平行,这两条直线也互相平行。

初中几何公式:角。

9同位角相等,两直线平行。

10内错角相等,两直线平行。

11同旁内角互补,两直线平行。

12两直线平行,同位角相等。

13两直线平行,内错角相等。

14两直线平行,同旁内角互补。

初中几何公式:三角形。

15定理三角形两边的和大于第三边。

16推论三角形两边的差小于第三边。

17三角形内角和定理三角形三个内角的和等于180°。

18推论1直角三角形的两个锐角互余。

19推论2三角形的一个外角等于和它不相邻的两个内角的和。

20推论3三角形的一个外角大于任何一个和它不相邻的内角。

21全等三角形的对应边、对应角相等。

22边角边公理有两边和它们的夹角对应相等的两个三角形全等。

23角边角公理有两角和它们的夹边对应相等的两个三角形全等。

24推论有两角和其中一角的对边对应相等的两个三角形全等。

25边边边公理有三边对应相等的两个三角形全等。

26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等。

27定理1在角的平分线上的点到这个角的两边的距离相等。

28定理2到一个角的两边的距离相同的点,在这个角的平分线上。

29角的平分线是到角的两边距离相等的所有点的集合。

初中几何公式:等腰三角形。

30等腰三角形的性质定理等腰三角形的两个底角相等。

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边。

32等腰三角形的顶角平分线、底边上的中线和高互相重合。

33推论3等边三角形的各角都相等,并且每一个角都等于60°。

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

35推论1三个角都相等的三角形是等边三角形。

36推论2有一个角等于60°的等腰三角形是等边三角形。

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

38直角三角形斜边上的中线等于斜边上的一半。

39定理线段垂直平分线上的点和这条线段两个端点的距离相等。

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

42定理1关于某条直线对称的两个图形是全等形。

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。

初中数学知识点总结思维导图篇八

1、单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

2、单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

2平方差公式。

两数和与这两数差的积,等于它们的平方差。

3完全平方公式。

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

4二元一次方程组。

1、方程中含有未知数,并且未知数的指数(或未知项的次数)都是1,像这样的方程叫做二元一次方程。

2、把两个含有相同未知数二元一次方程合在一起,就组成了一个二元一次方程组。

3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

4、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解(二元一次方程组的解可能会出现在选择题中验根问题)。

5、消元:将未知数的个数由多化一,最终解一元一次方程然后反代解决二元三元、逐一解决的想法,叫做消元思想。

初中数学知识点总结思维导图篇九

1.如果把解题比做打仗,那么解题者的“兵器”就是数学基础知识,“兵力”就是数学基本方法,而调动数学基础知识、运用数学思想方法的数学解题思想则正是“兵法”。

2.数学家存在的主要理由就是解决问题。因此,数学的真正的组成部分是问题和解答。“问题是数学的心脏”。

3.问题反映了现有水平与客观需要的矛盾,对学生来说,就是已知和未知的矛盾。问题就是矛盾。对于学生而言,问题有三个特征:

(1)接受性:学生愿意解决并且具有解决它的知识基础和能力基础。

(2)障碍性:学生不能直接看出它的解法和答案,而必须经过思考才能解决。

(3)探究性:学生不能按照现成的的套路去解,需要进行探索,寻找新的处理方法。

4.练习型的问题具有教学性,它的结论为数学家或教师所已知,其之成为问题仅相对于教学或学生而言,包括一个待计算的答案、一个待证明的结论、一个待作出的图形、一个待判断的命题、一个待解决的实际问题。

5.“问题解决”有不同的解释,比较典型的观点可归纳为4种:

(1)问题解决是心理活动。面临新情境、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理办法的一种活动。

(2)问题解决是一个探究过程。把“问题解决”定义为“将先前已获得的知识用于新的、不熟悉的情境的过程”。这就是说,问题解决是一个发现的过程、探索的过程、创新的过程。

(3)问题解决是一个学习目的。“学习数学的主要目的在于问题解决”。因而,学习怎样解决问题就成为学习数学的根本原因。此时,问题解决就独立于特殊的问题,独立于一般过程或方法,也独立于数学的具体内容。

(4)问题解决是一种生存能力。重视问题解决能力的培养、发展问题解决的能力,其目的之一是,在这个充满疑问、有时连问题和答案都是不确定的世界里,学习生存的本领。

6.解题研究存在一些误区,首先一个表现是,用现成的例子说明现成的观点,或用现成的观点解释现成的例子。其次一个表现是,长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破。第三个表现是,多研究“怎样解”,较少问“为什么这样解”。在这些误区里,“解题而不立法、作答而不立论”。

7.人的思维依赖于必要的知识和经验,数学知识正是数学解题思维活动的出发点与凭借。丰富的知识并加以优化的结构能为题意的本质理解与思路的迅速寻找创造成功的条件。解题研究的一代宗师波利亚说过:“货源充足和组织良好的知识仓库是一个解题者的重要资本”。

8.熟练掌握数学基础知识的体系。对于中学数学解题来说,应如数学家珍说出教材的概念系统、定理系统、符号系统。还应掌握中学数学竞赛涉及的基础理论。深刻理解数学概念、准确掌握数学定理、公式和法则。熟悉基本规则和常用的方法,不断积累数学技巧。

9.数学的本质活动是思维。思维的对象是概念,思维的方式是逻辑。当这种思维与新事物接触时,将出现“相容”和“不容”的两种可能。出现“相容”时,产生新结果,且被原概念吸收,并发展成新概念;当出现“不容”时,则产生了所谓的问题。这时,思维出现迂回,甚至暂时退回原地,将原概念扩大或将原逻辑变式,直到新思维与事物相容为止。至此,也产生新的结果,也被原思维吸收。这就是一个思维活动的全过程。

10.解题能力,表现于发现问题、分析问题、解决问题的敏锐、洞察力与整体把握。其主要成分是3种基本的数学能力(运算能力、逻辑思维能力、空间想象能力),核心是能否掌握正确的思维方法,包括逻辑思维与非逻辑思维。

您可能关注的文档