2023年代数式的值说课稿(实用8篇)

  • 上传日期:2023-11-13 09:53:54 |
  • zdfb |
  • 9页

青少年是国家的未来,我们应该关注他们的成长和发展,为他们提供更好的教育和成长环境。在写总结时,我们可以借鉴一些优秀的总结范文,了解优秀总结的特点和结构。我们可以通过研读这些总结范文,借鉴其中的优秀写作思路和表达方式。

代数式的值说课稿篇一

在本节内容学习之前,学生已具有了如下的“现有发展区”.但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解.据此,我认为本节课的教学难点为:正确规范书写代数式和分析问题中的数量关系,列出代数式。

基于本节课的特点及初一学生形象思维为主的现状,我采用以下方法实现教学目标。以启发式教学为主,在抓好双基的情况下,采用分层指导的思想方法。通过生活情景引出课题,为体现代数式可以表示简单的数量关系,并可以解决生活中的问题,安排了三个例题和适当练习,在课堂最后安排探索规律来列代数式,体现自主探索,合作交流的过程,在达到教学目标的同时,让不同的人在数学上得到不同的发展。

遵循教为主导,学为主体,练为主线的教育思想,让学生积极参与教学,通过类比和初步的数学建模思想,在课堂中不断锻炼自己的思维,从而亲身经历知识的发生、发展、形成和应用的过程,并倡导合作交流的学习方法,养成积极主动的学习习惯。

在教学过程中,借助多媒体辅助教学,形象直观的体现教学内容,提高学习效率,调动学生的积极性,并在最后设置自我检测。

(一)、复习巩固:用字母表示数量关系

从学生上节课所学内容引入,符合学生的认知规律

(二)、由复习巩固中的代数式引入新课,引入代数式的概念;注意点;代数式的规范写法:

再通过做一做中问题的解决,说明了为什么要学习列代数式。在解决一些实际问题时,往往先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得更简洁,更具一般性。

再次通过巩固新课环节强调要正确写出代数式要注意点:

(1)审清题,弄懂一些术语

(2)抓住关键词,弄清运算顺序

(3)一般先读的先写

(4)用代数式表示应用问题时,还弄清题中的数量关系。

最后通过巩固提高环节说明:同时一个代数式可表示不同的意义。

代数式的值说课稿篇二

作为一名教职工,时常要开展说课稿准备工作,说课稿是进行说课准备的文稿,有着至关重要的作用。如何把说课稿做到重点突出呢?以下是小编整理的代数式说课稿,仅供参考,大家一起来看看吧。

大家好!今天我说课的题目是《义务教育课程标准实验教科书·数学》(人教版)七年级上册第五章第二节《代数式》这一课的内容。根据《课程标准》对这部分内容的要求及本课的特点,结合学生的实情,我将本节课分为五部分:教材分析、教法分析、学法分析、教学过程分析,几点说明。

(一)教材的地位和作用。

1.代数式是学生在学习了用字母表示数的基础上,进一步拓宽知识,是对上一节内容的深化,通过这节课要培养学生合理、规范、准确的数学表达方式和书写习惯,这是体验数学的美感和锻炼数学逻辑思维的必不可少的步骤。

2.代数式既是有理数的概括与抽象,又是整式运算的基础,也是学习方程及函数知识的基础。列代数式即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换,它可以帮助人们从数量关系的角度更清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的密切联系。

(二)教学目标及确立的依据。

本教案力求通过富有吸引力、生动有趣的教学过程,充分体现以“教师为主导,学生为主体”的教学原则,调动学生的积极性,在教学中,引导学生自主探究,合作交流,引导学生在获取知识的过程中,学会观察、探究、概括、表达等数学方法,所以本节课我确定了三个教学目标。

1.知识目标:通过实例让学生经历代数式概念的产生过程,了解代数式的概念,学会用代数式表达简单的数量关系,深化符号感,掌握代数式的有关书写格式。

2.能力目标:通过丰富的例子使学生体验从语言叙述到代数表示,从代数表示到语言叙述的双向过程,能解释一些简单的代数式的实际背景或几何意义,培养学生的分析问题能力、数学语言表达能力、自主学习的能力、合作与探究的意识。

3.情感目标:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间。通过列代数式表示生活中简单的数量关系使学生体验到代数式的实际意义及建模思想方法的实际应用价值,与同学互动过程中学会和人交流和合作,体验互相支持互相关怀的美好情感。

(三)教学的重点及难点。

1.教学重点:代数式的概念和如何根据文字的意义列代数式。

2.教学难点:学生自己构造现实情境,去解释不同代数式的意义。

突破重难点的方法是:通过探究性教学方法激发学生兴趣和好奇性,引导学生积极主动地去领悟新知识,并让学生在主动思考探究的过程中自然地获取知识,去亲身体会学习知识的过程,从而加强学生主动探索,敢于发现的科学精神,充分运用多种教学手段,设置问题,探究讨论,例题讲解,课后小结,布置作业,突出主线,层层深入,逐一突破重难点。

1.学生以自主合作的方式为主进行学习,教师以启发等方式进行引导,课堂以小组合作学习为主要的教学组织形式。遵循因材施教,循序渐进以及理论联系实际的原则,突出体现了“全面参与、全员参与、全程参与”与“自主性、互助性、创造性”的教学思想,逐步培养了学生运用基本的数学思想方法去发现问题、分析问题和解决问题的能力,全面提高学生的综合素质。

2.通过“激发兴趣、引入新课,观察联想、形成概念,应用拓展、巩固概念,反思辩论、深化概念,纵横发散、智能升级,学以致用、运用知识,自我反思、课外拓展”的教学程序,优化教育教学过程,提高教学三位目标的达成度。

古人言:“授人以鱼,供一饭之需,教人以渔,则终身受用无穷。”教给学生如何学是教师的职责。因此在本节课的教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松愉快的课堂气氛中亲身体验知识的形成过程。

(一)创设情境,授之以欲。

【设计意图】。

创设愉悦宽松的游戏氛围,让学生在完全放松的情绪下感知生活,增加新鲜感,激发学生兴趣,锻炼学生的反应能力,体会代数式的重要意义。产生学习代数的兴趣,激发学习数学的热情,同时也进行了思想及责任感教育。教育家霍姆林斯曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。

(二)形成概念,授之以渔。

1.实例引领。

(1)乙数比甲数大3;

(2)甲乙两数的和为10;

(3)甲数是乙数的5倍;

(4)乙数比甲数的平方少2。

(学生独立完成,请一生板演答案,师生共同纠错,重点强调做题的细节,如(4)题中的括号不能漏掉,(5)题中用乘方来表示)。

【设计意图】英国数学教育心理学家斯根普指出:概念教学应该从大量实例出发,用实例直观地帮助完成定义而不是就定义教定义。因此,教师在课本已有的加、减、乘、除的基础上适当地增加了两个实例,(4)是减法运算,(5)是乘方运算,这位后面概括代数式的意义及代数式的书写规则做了一定的准备,并进一步体现了字母代数的数学思想,有利于突破教学难点。

2.概念生成。

(1)观察:上述问题中出现的式子:a+3,10-a,1/5a……这些都称为代数式。

(教师指导学生观察,小组讨论并发言,应适时进行点拨,目的是让学生归纳出上述式子的共同特点,并总结出怎样的式子是代数式。

(2)联想:如50,a等单独的一个数或者一个字母是不是代数式?(学生思考讨论并举手发言)。

(3)质疑:何为运算符号?运算符号是+,-,x,/,乘方,开方。而=,大于,小于,等等是关系符号而不是运算符号,凡由这些符号连结的式子都不是代数式而符号两边的式子是代数式。

(4)归纳:

a.代数式是用运算符号把数或表示数的字母连接而成;。

b.单独一个数或字母也是代数式.

c.代数式中不含等号和不等号。(学生归纳,教师板书,概括要点和关键字)。

【设计意图】此阶段通过“观察-联想-质疑-归纳-表达”展现知识的形成过程和学生的思考过程,发展学生的智力品质,让学生在获取知识的同时领会一定的数学思想和思维方法,实现学法指导的目的。

3.巩固联系,联系实际,贴近生活。

学生独立做课本上第120页1题,两生板演答案,师生共同纠正书写问题。

【设计意图】设计此练习,让学生积极主动自我尝试、剖析、修正和反思,使其真正理解代数式概念的内涵。让学生能在实际情境中准确地用代数式解决实际问题,并记住相关题目对学生进行勤俭节约教育和刻苦学习的教育。

(三)自我归纳,授之以鱼。

1.结合上面的练习中出现的问题,组织学生思考小组讨论后总结出代数式的书写规则,请代表发言补充.

(探索归纳出)书写代数式请注意以下几点:

(1)x×y×z通常写为x·y·z或xyz(乘号省略)。

(2)把数字写在字母的前面,如6xb常写作6·b或6b。如果数字是带分数的要写成假分数。

数字和数字之间相乘用x。

(3)10÷m通常写作(除号用分数线表示)。

(4)若最后结果是加减关系的须写单位时,则将整个式子括起来再写单位。

(5)相同字母或因式的积,要写成乘方的形式。

2.补充练习。

下列代数式中符合书写要求的是2b.1-xc.-x2y。

【设计意图】一是培养学生勤于动脑思考,善于总结归纳的良好数学思维品质和语言表达能力;二是可使学生运用批判性的思维找出代数式书写中的错误,进一步加深理解代数式的'书写规则。

3.纵横发散,自主创新。

人人来当老师。

(1).请同学们用10x+5y赋予实际生活背景或几何背景设计一道数学题!

(教师可类比英语中的英汉互译,使学生明白此题与前面的练习是一个双向的过程,是互逆思维,鼓励学生结合生活经验大胆想象出此代数式的实际背景.)。

(2).抛砖引玉,分组竞赛。

让学生结合生活经验对下列代数式做出解释。a+b,ab,6p.

【设计意图】通过同一代数式让学生说出不同的生活意义,以培养学生的发散思维能力和语言表达能力,培养学生的自主创新精神。

4.学以致用,关爱生命。

【设计意图】人们越来越关注生活质量,关注健康,此应用题的教学使学生体验到数学与现实生活的密切联系。同时也为下一节列代数式及后面要学习的代数式的值做延伸和铺垫。

(四)课堂小结。

1、谈谈你的收获;

2、谈谈你的疑问,3、解疑。

(小组畅所欲言,互讲本节课的内容,总结本节课所学习的知识和应注意的问题,教师对小组总结情况进行评价)。

【设计意图】在学习成果分享中发挥学生的主体意识训练学生概括归纳知识的能力,从而不所学的知识系统化、条理化,提高他们的表达能力和归纳总结能力。

(五)分层作业,自由拓展。

(1)必做题:课本105页2、3题。

(2)选做题:课本121页1题。

【设计意图】由于学生在知识、技能、能力等方面的发展不尽相同,所以分层次布置课外作业,兼顾学习有困难的和学有余力的学生,使他们都能达到数学标准中规定的基本要求并使部分学生能发展他们的数学才能。

1.板书设计。

(2)书写代数式请注意以下几点。

(3)补充练习。

2.时间安排。

(1)创设情境,授之以欲(5分钟)。

(2)形成概念,授之以渔(15分钟)。

(3)自我归纳,授之以鱼(15分钟)。

(4)课堂小结(5分钟)。

3.设计特色。

在探究过程中确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,真正焕发教学活力,让他们自己往前走,自己去锻炼去创造。

始终把素质教育思想渗透在课堂教学中,始终做到面向全体学生,关注个性差异,让每个学生在生动活泼的学习气氛中获取知识,提高能力,发展智力,培养正确的情感态度和价值观。

代数式的值说课稿篇三

1.填空:

(1)x的表示成_____________;(2)比a多的数是_____________;(3)b的绝对值表示为_____________;(4)x的相反数表示成_____________;(5)小明今年m岁,则他去年_____________岁;(6)买10千克大米,花了a元,则这种大米的单价为_______元/千克。

(1)x的3倍再加上2的和;。

(2)a的与的差;。

(3)x的相反数与x的算术平方根的`和;。

(4)a与b两数的平方和。

3.说出下列代数式的实际意义:

(1)苹果每千克的价格是x元,则2x可以理解为_________________________________;(2)可以解释为____________________________________________________________。

4.当x分别取下列值时,求代数式1-3x的值:

(1)x=1;(2)x=。

回顾。

(1)什么是代数式?什么是代数式的值?

(2)字母与数一起参与运算时,书写过程中应注意哪些问题?

5.下列代数式中,哪些是整式?哪些是单项式?哪些是多项式?

解:整式有:

单项式有:

多项式有:

6.说出上题中单项式的系数和次数;多项式的项、每一项的系数和次数用常数项。

回顾。

(1)什么是单项式、多项式、整式?

(2)什么是单项式的系数和次数?多项式的次数如何确定?

7.下列各组代数式是不是同类项?

(1)与;(2)与;(3)-2与4.3;(4)与;(5)与8.合并同类项:

(1)+=_______________;(2)=________________;(3)=____________;(4)=_____________;9.去括号:

回顾。

(1)什么叫做同类项?

(2)合并同类项的法则是什么?

(3)去括号法则是什么?

二、典例精析。

例1、小明家统计了家里用水量与应缴水费(元)之间的关系,如下表用水量。

水费/元。

11.20+0.50。

22.40+0.50。

33.60+0.50。

44.80+0.50。

56.00+0.50。

(1)写出用水量与水费(元)之间的关系;(2)计算用水量是35时的水费。

代数式的值说课稿篇四

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议。

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.。

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.。

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议。

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的.学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义。

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例。

代数式。

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.

教学重点和难点。

重点:用字母表示数的意义?

难点:学会用字母表示数及正确地说出代数式所表示的数量关系?

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)。

(1)加法交换律a+b=b+a;

(2)乘法交换律a·b=b·a;

(3)加法结合律(a+b)+c=a+(b+c);

(4)乘法结合律(ab)c=a(bc);

(5)乘法分配律a(b+c)=ab+ac?

2、指出:

(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;。

代数式的值说课稿篇五

今天我教授的是北师大版七年级第三章代数式第一课时今天感觉很成功的一节课环节来教授新课,先让学生表示出代数式,既是对上节课的复习又是对这节课的引入,然后,我通过学生书写的题目,引领学生总结代数式的共同特点,最后引出代数式的.定义。下来,我让学生判断几个式子是否是代数式?引起学生的认知冲突,教师从中纠正,让学生印象更深刻!

最后我出了一道题让学生做,包含三问结果学生的计算能力跟不上,逻辑思维能力也跟不上,最后一问,知道代数式的值,让学生去求其中一个字母,其实就是方程,可见学士的建模思想和逻辑思推理能力很差我得在这方面今后备课学要注意,要写功夫,另外学生读题的能力也不行半天读不懂题意,今后备课也得注意板书我今天也可以去要求自己,尽管效果不好,但比以前强!

感谢我的同事罗主任,宋老师,李老师,薛老师,谢谢你们的帮助!

代数式的值说课稿篇六

从生活出发的教学让学生感受到学习的快乐 在“代数式”这节课中,由数青蛙引入,带领学生一起探究得出规律,由此引出代数式的概念。在举例时,指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?”学生们开始活跃起来,一位学生举起了手,“一本书p元,6p可以表示6本书价值多少钱”,受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到“人人学有用的数学”的新理念,正如我们所说的,“代数式在生活中”。然后,着重讲解列代数式,按和,差,积,商,倍,分,半等运算,先出现先列时等原则,分清是先平方,还是先求和差。通过典型问题的讲解与练习,学生掌握的不错。

不足和今后在教学中应注意

1.营造有利于新课程实施的环境氛围。

2.注重新型师生关系的建立,在处理好学生、教师、教材三者的关系上多下功夫,力求建立更为和谐融洽的师生关系,有良好的课堂教学气氛,以取得良好的课堂教学效果。

3.进一步学习新课程改革的教育教学理论,在教师角色转变上多做工作,增强自己是学生学习的促进者、教育教学的研究者、课程的建设者和开发者,向开放型的教师迈进。

4.努力提高自己的业务能力,特别是驾驭堂的能力和教材的能力。探索适合我校学生特点和自己特点的课堂教学模式。

5.不断学习和提高现代化教学技术,提高多媒体课件制作能力,能制作出针对性、实效性强的多媒体教学课件,使之更好地辅助教学,提高课堂教学效率、课堂教学质量。

另外,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。

代数式的值说课稿篇七

《代数式》是浙教版七上实验教材第四章第二节课程。本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。

在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。

根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:

知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的。

过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。

教学重点:代数式的概念及用代数式表示常用的数量关系。

教学难点:用代数式表示实际问题中的数量关系。

根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。

在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。

代数式的值说课稿篇八

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

1用代数式表示乙数:(投影)。

(1)乙数比x大5;(x+5)。

(2)乙数比x的2倍小3;(2x-3)。

(3)乙数比x的倒数小7;(-7)。

(4)乙数比x大16%((1+16%)x)。

(应用引导的方法启发学生解答本题)。

二、讲授新课。

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。

解:设甲数为x,则乙数的代数式为。

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x。

(本题应由学生口答,教师板书完成)。

最后,教师需指出:第4小题的答案也可写成x+16%x。

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积。

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。

解:设甲数为a,乙数为b,则。

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)。

(本题应由学生口答,教师板书完成)。

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数。

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2。

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a。

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。

解:(1)m(m+6)个;(2)(m)m个。

三、课堂练习。

1设甲数为x,乙数为y,用代数式表示:(投影)。

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕。

四、师生共同小结。

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

五、作业。

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究。

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)。

将本文的word文档下载到电脑,方便收藏和打印。

您可能关注的文档