最新教师《圆的周长》教学设计与反思 圆的周长教学设计一等奖(5篇)

  • 上传日期:2023-03-16 22:06:45 |
  • zdfb |
  • 13页

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

教师《圆的周长》教学设计与反思 圆的周长教学设计一等奖篇一

新课标人教版六年级上册第62~64页。

1、通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

2、能利用圆的周长的计算公式解决一些简单的数学问题。

3、培养学生的观察、比较、分析、综合及动手操作能力。

4、通过对圆周率的计算,渗透爱国主义的思想。

重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

难点:理解圆周率的意义。

【】

课件、软尺、直尺、绳子、圆形。

课前交流:请同学们唱一首歌。

(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

师:同桌想一想圆的周长怎样测量?

师:把你的好方法在小组内交流一下。

(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

师演示(线绕圆一周,然后量出线的长度。)

师:还有其他的方法吗?

生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

师:这个办法也很妙!其他同学还有要补充的吗?

生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

师:你的想法可真不简单!

师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

生:能!

师:正方形的周长和什么有关?

生:周长是边长的4倍,

师:那么圆的周长和什么有关系呢?

生:圆的直径越长圆越大,所以周长就越长。

师:那周长和直径有怎样的关系呢?

(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

师:现在大家通过填写表格发现了什么?

生:在测量中发现,大小不同的圆的周长是不同的。

师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

生:是由半径(或直径)唯一决定的。

师:圆的周长与直径或半径之间到底存在着怎样的关系?

生:每组算的结果不大一样,但都是3点多。

师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

生:一样。

师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

师:你能通过分析表格得到圆的周长的计算公式了吗?

学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

师:从表中我们可以看出圆的周长÷直径=圆周率

(板书:圆的周长=π×直径)。

如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。

生读:c=πd c=2πr

师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

生:圆的直径或半径。

(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。

(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。

教师《圆的周长》教学设计与反思 圆的周长教学设计一等奖篇二

圆的周长

通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。

对圆和周长的概念已有初步的认识

1、理解圆周长的概念,理解圆周率的意义。

2、使学生掌握圆周长的计算公式及公式的推导过程。

3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。

4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。

圆周长公式的推导。

直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。

1、学生说圆的认识;

(你对圆的知识有哪些了解)

2、揭示课题:

今天我们要一起来学习圆的周长。(板书:圆的周长)

1.认识圆的周长;

(1)师拿出圆片让学生指出圆的周长;

(哪一部分是圆的周长)

(2)描出两个规格不同的圆的周长;感受圆的周长;

(请你描出练习纸上两个圆的周长。)

(哪一个周长长?)

(3)揭示圆周长的概念;

(用自己的话说说什么是圆的周长)

师小结:围成圆的曲线的长叫做圆的周长;

围成圆的一周的长叫做圆的周长。(幻灯出示)

2、理解、运用圆周长的测量方法。

师问:圆的周长长短不一,该怎么测量?

生边演示测量圆片周长,边介绍绳测法。

要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。

学生汇报测量结果,师记录。

圆片测量记录单:

3.探究圆的周长与直径的关系。

(1)猜测跟圆周长相关的量;

(猜测一下,圆的周长长短跟什么量有关?)

计算记录单中周长与直径的比值,得数保留两位小数;

学生反馈比值;

周长(厘米)

直径(厘米)

周长与直径的比值(得数保留两位)

(2)认识圆周率

①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。

(板书:圆周率 π )

②幻灯片展示圆周率的由来,学生自主阅读;

总结圆周长的计算公式。

①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?

提示:从测量记录单中找取。

②如果周长用c表示,字母式是怎样的?

③周长跟半径又是怎样的关系呢?字母式呢?

(板书:圆周长=圆周率×直径 c=πd 或

圆周长=2×圆周率×半径 c=2πr

基本练习

一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。

只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:

两个小朋友同时同速从a点到b点,谁先到达?

b

a

教师《圆的周长》教学设计与反思 圆的周长教学设计一等奖篇三

1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

2、通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

3、初步学会透过现象看本质的辨证思想方法。

4、结合圆周率的`学习,对学生进行爱国主义教育。

正确计算圆的周长。

理解圆周率的意义,推导圆周长的计算公式。

多媒体课件三套、系绳的小球。

塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

一、以旧引新,导入新课

1、复习长方形、正方形的周长。

我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

2、揭示圆的周长。

(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

二、动手操作,引导探索

1、测量圆周长的方法。

(1)提问:你知道了什么是圆的周长,还想知道什么?

我们先研究怎样测量圆的周长,请同学们分组讨论一下。

把你们讨论的结果向大家汇报一下?学生边回答边演示。

(2)教师甩动绳子系的小球,形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

2、认识圆周率。

(1)探讨圆的周长与直径的关系。

①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

提问:你们是怎么看出来的圆周长跟直径有关系?

②学生测量圆周长,并计算周长和直径的比值。

圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

生测量、计算、填表。在黑板上出示一组结果。

请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

(2)揭示圆周率的概念。

通过以上的观察你发现了什么?

任何圆的周长总是直径的3倍多一些。

那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)

(3)了解让中国人引以为自豪的圆周率的历史。

关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……

3、推导圆周长的计算公式。

根据刚才的探索,你能总结出圆周长的计算公式吗?

学生推导圆周长计算公式:c=πd;c=2πr。

要求圆的周长,你必须知道什么?(直径或半径)

4、运用公式计算。

(1)求下面各圆的周长,只列式不计算。

课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)

(2)出示例1。①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?

②学生尝试练习,反馈评价。

③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?

(3)完成第112页“做一做”。

(4)看书质疑。

三、运用新知,解决问题

1、下面的说法对吗?并说明理由。

(1)圆的周长是它直径的π倍。()

(2)大圆的圆周率大于小圆的圆周率。()

(3)π=3.14()

2、测量一圆形实物直径,计算它的周长。

3、有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)

四、总结全课,储存新知。

这节课你自己运用了哪些学习方法,学到了哪些知识?

五、思考题。

课件演示:大圆的周长和两个小圆的周长之和同样长吗?

教师《圆的周长》教学设计与反思 圆的周长教学设计一等奖篇四

苏教版九年义务教育六年制小学数学第十一册”圆的周长”

1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。

2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。

3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。

掌握圆周长的计算方法

】理解圆周率的意义

教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。

学具:圆、直尺、小绳。

(1)认识圆的周长。

教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?

(师出示正方形的图形。)

学生指着图形回答上述问题。

生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。

教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。

师:通过手摸正方形周长和圆的周长,你发现了什么?

生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。

老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?

老师一边显示图象一边讲述:

以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。

圆的周长展开后变成了一条线段。

(2)揭示课题。

师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。

(板书课题:圆的周长计算)

【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】

(1)学生动手实验,测量圆的周长。

全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。

(学生测量圆的周长,并板书测量的结果。)

师:你们是怎么测量出圆的周长的呢?

生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。

师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?

(老师边说边做手势,同学们笑了。)

生1:不能。

师:还有什么别的方法测量圆的周长吗?

生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。

教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。

教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?

生2:(不好意思地摇摇头)不能了。

师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?

【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】

(2)根据实验结果,探索规律。

教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。

师:这两个圆有什么不同?

生:两个圆的周长长短不同。

师:圆的周长由什么决定的呢?

生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。

师:请认真观察,(教师再演示)这条绳子是这个圆的什么?

生:是这个圆的半径。

师:半径和什么有关系?圆的周长又和什么有关系呢?

生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。

师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。

(学生测量圆的直径)

随着学生报数,教师板书:

圆的周长圆的直径

9厘米多一些3厘米

31厘米多一些 10厘米

47厘米多一些 15厘米

教师请同学们观察、计算、讨论圆的周长和直径的关系。

(学生讨论,教师行间指导、集中发言)

生1:我发现这个小圆的周长是它的直径的3倍。

师:整3倍吗?

生1:不,3倍多一些。

生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。

生3:我发现第三个圆的周长也是它的直径的3倍多一些

(板书:3倍多一些)

师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。

滚动法验证:

绳绕法验证:

投影显示验证:

直径:

周长:

师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?

投影出示祖冲之的画像并配乐朗诵。

“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3。1415926---3。1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)

同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”

教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。

(板书:圆周率)

圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3。14。

师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?

(学生独立思考、讨论、看书)

板书公式:c =πd

c =2πr

【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】

3、反馈练习、加深理解。

请同学们把开始测量的三个圆的周长用公式准确计算出来。

(学生计算)

师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?

生:计算比测量要准确、方便、迅速。

(1)根据条件,求下面各圆的周长(单位:分米)

(学生计算,得出结果)

师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?

生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。

【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】

(2)判断正误。(出示反馈卡)

① 圆周长是它的直径的3。14倍()

② 圆周率就是圆周长除以它直径的商 ()

③ c =2π r =πd()

④ 圆周率与直径的长短无关 ()

⑤ π> 3。14()

⑥ 半圆的周长就是圆周长的一半()

一部分同学认为第⑥题是错误的。

教师举起了表示半圆的模型,(如图)

请判断失误的同学们亲自指一指半圆的周长。

在操作中,同学们恍然大悟,发现半圆的周长

比圆的周长的一半多了一条直径的长度。

(3)抢答。直接说出各题的结果。(单位:厘米)

① d =1 c =

② r =5 c =

③ c =6。28d =r =

(同学们争先恐后地报出自己算出的答案)

(4)运用新知识,解决实际问题。

教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。

同学们听了这个故事,摇摇头,表示不赞赏。

一位同学站了起来:“张伟锯古树该罚款了。”

教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”

教室里热闹起来,同学们七嘴八舌地议论着……

生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”

(同学们笑了,鼓起掌来,表示赞赏。)

(四)课堂小结:

师:这节课学习了什么?请打开书----看书。

教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”

师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。

(板书:变----不变)

师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。

画一个周长是12。56厘米的圆。怎样画?

【简评:这节课的设计体现以下几个特点:

1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。

2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。

3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。

4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。

5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】

教师《圆的周长》教学设计与反思 圆的周长教学设计一等奖篇五

1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

:推导圆的周长的计算公式,准确计算圆的周长。

:理解圆周率的意义。

:圆片、铁圈、绳子、直尺。

:观察、演示、小组合作交流

1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

2、化曲为直,测量周长。

(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

讨论:

方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

一圆的周长与直径有关系。

1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

3、总结:圆的直径的长短,决定了圆周长的长短。

二圆的周长与直径的倍数关系。

1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长c(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

三、感受数学文化,激发情感教育。

1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

2、介绍计算机计算圆周率的情况。

3、教学圆周率:π≈3.14。

学生讨论:(1)求圆的周长必须知道哪些条件?

(2)如果用c表示圆的周长,求圆周长的字母公式有几个?各是什么?

生回答,教师板书:c=πd或c=2πr

您可能关注的文档