2023年余角和补角教学目标(通用12篇)

  • 上传日期:2023-11-23 12:32:55 |
  • admin |
  • 8页

总结要具备客观性与主观评价相结合的特点,避免敷衍和过于主观的情绪色彩。保持积极的心态和对自己的信心,可以克服困难和挑战。这些总结范文中涵盖了不同领域的总结内容,对于我们的总结写作有很大的帮助。

余角和补角教学目标篇一

“角的度量”是在学生认识角的大小基础上进行的,是小学阶段几何初步知识的一个重要内容,也是操作性课题,感觉比较抽象、枯燥。这节课中数学概念教多,有1°的认识、中心点、零度刻度线、内刻度线、外刻度线都是一些抽象的纯数学语言。量角对四年级学生而言,有一定的难度。

余角和补角教学目标篇二

在本节课中,我按照认识事物的一般规律,把整节课分为以下三部分:知识导入、知识形成、知识应用,从这三个方面对本课的两个知识点进行讲解。我认为,本节课的成功之处在于采用“先学后教”的模式,大大推动了本节课的教学进度。

根据学生的掌握情况对教学内容做适当的调整。我发现有大约一半的学生对余角和补角的定义和性质比较了解所以在授课过程中相对于定义和性质本身我更注重知识的深层理解和应用。

学习目标后,我用一个简单的折纸活动导入余角和补角的定义,并在学生对知识有初步印象之后出示两个简单的计算题作为自学检测一,检验自学成果之外更帮助学生自己归纳余角和补角的定义。学生能够用自己的话解释后,再给出确切的定义,使得学生自然而然的获得知识。得出定义后,我围绕定义提出了四个疑问,引导学生更深层次地理解定义。

学生掌握知识后,要求学生用刚刚学会的知识解决一个生活中的问题,使学生体会到生活中处处有数学。最后,给出一列角的度数,要求学生求它们的余角和补角,并从中得出一些一般规律。

完成定义的教学后,我出示自学检测二。自学检测二由两个与补角定义有关的问题组成,解决问题的过程再次复习补角定义,而得出的结论正是需要掌握的第二个学习目标——补角的性质,通过类比得到余角的性质,知识的衔接自然,学生印象也比较深刻。在这之后,通过一个练习,帮助学生巩固所学知识,同时也开始接触简单的说理题。

由于学生在这节课之前已经学习了角的运算和角平分线等相关知识,在学生掌握余角和补角的定义和性质之后,设置了一个需要综合应用知识的例题,训练学生分析推理的能力。

这节课的最后,我请学生总结了本节课的知识,将余角和补角的相关知识列表比较,再回到学习目标,让学生再次对照目标,检验本节课的学习效果,为课后的指导和后续的教学提供依据。

剩下的时间交给学生当堂训练,通过及时完成练习册和相应练习。

回想起来,这节课的实施过程还是比较顺畅的,但也暴露出一些不足:最大的问题是,学生刚刚接触证明类的题目,普遍存在知道原因,但是不能用数学语音准确的表达,在用语的规范性也比较弱。在今后的教学中我还要下更多的功夫培养学生使用数学语音的能力,使学生明白每一个结论的得出都是有理可依的,要求他们有条理的表达解答问题的过程;通过一定数量的练习使学生理解简单的推理过程,并且能够准确描述自己的思考过程,具备严谨的学习态度。

另外,我上课的激情不够,没能充分的调动学生的积极性。以后我要更投入教学,力求能将每堂课上得生动有吸引力,使学生愿听,想听,在课堂上解决问题,真正做到高效课堂。

总之,通过这节课的实施,我充分认识到了自己努力的方向:即深入分析教材,理解教材的内涵;以自己饱满的教学激情,调动学生的学习积极性,尽可能为学生创造学习的舞台;帮助学生获得最大程度的发展。

余角和补角教学目标篇三

本节课是人教版数学七年级上册第四章第三节第三课时内容,是在学生对平面图形和立体图相关知识有了整体认识的基础上,结合线段的比较和计算,进一步研究角之间的数量关系。本小节第一课时重点研究角的概念和分类,第二课时研究角的度量与计算,学生角概念和表示相对熟练,本课时将通过对余角和补角概念的学习,明确角与角之间特殊的数量关系和对应的位置关系,在应用符号语言表示和计算余角和补角中增强学生的符号意识,实现数学文字、符号、图形语言的相互转换,发展学生的几何直观,形成学生推理验证的习惯,为以后学习一些平行线、三角形、全等三角形、相似三角形和解直角三家性等知识奠定了基础。教材设计在计算和比较中,引导学生观察归纳出“补角的性质”,并类比研究余角的性质,以增强学生观察归纳能力和类比推理能力。

如何利用教材的留白,如何在充分考虑初一学生已有知识经验基础上设计探究活动把指导学生养成自主、合作、探索的学习方式落实在课堂教学的实践中?如何引导学生自觉经历观察、实验、猜测、推理、交流、反思等活动,获得知识、形成能力、积累经验、感悟思想、形成习惯?——这两个问题成为本节课设计的出发点和归宿,我进行了如下的设计,取得了一定的收效。

(一)巧设情境,激趣引入。本节课教材的引入比较直白,不足以激发学生的探究兴趣。集合我校学生知识面广的特点,以意大利的著名建筑比萨斜塔做背景引出两个角互余和互补的关系,吸引么注意力的同时,发展了学生的几何直观。

(二)体现概念学习的特点,凸显学生主体地位。余角和补角的概念学习,设计学生自主学习教材,标出定义,找出关键词,举出例子。学生能够将概念的文字语言和图形语言统一起来;在学生展示的基础上,教师引导用等式表示余角和补角,得出概念的符号语言,最终实现三种语言的转换。整个学习以学生为主体,教师及时的引导和强调。

(三)合理补白,落实训练,积累经验。教材对角的性质进行了推理,但层次不清,说理不规范;我在这里先安排两组计算,让学生观察计算结果得出结论(同角或等角的补角相等),引导学生结合图形进行推理验证,教师规范板书,学生从中积累从具体到抽象的几何问题解决过程性经验和推理论证的书写经验。同时为下册学习证明铺垫基础。

(四)精选变式,渗透思想。在基础练习中设计找同一个的余角和补角,再通过对比,学生自主发现“同一个锐角的补角比它的余角大90°”、“一个任意角x不一定有余角和补角,对于任意角的余角和补角要分类讨论”。在拓展练习中根据一个角余角与补角的大小关系,在用方程解决问题的过程中渗透方程的思想。

(五)注重识图,发展学生的几何直观。在提高应用中通过具体图形,让学生猜想角度的大小关系,并借助“余角和补角的性质”进行说理,对于初步接触几何的学生来讲,识图与有序的说理能逐步形成“数形结合”的思想,发展几何直观。

这节课中,能够充分相信学生,让学生充分展开自学后引导学生展示,发动学生评议、纠错、完善,形成统一认识后再重点强调,对核心知识和核心推理过程予以板书示范。变式练习学生独立思考后、分组交流,最后全班纠错,对存在问题依靠学生解决,发挥“兵教兵、生强生”的作用。但在应用余角补角性质说理练习中,时间未把握好,对问题的处理显得粗糙。

1、对学生的动手能力特别是作图能力有待加强:如根据余角和比较的定义,借助三角尺做同一个锐角的余角和补角,体会同角的余角(补角)相等。

2、对学生学习资源的利用不充分,借助学生的学具引导学生体会余角和补角的性质。

3、课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程而出现中断或偏题主题的现象。

4、对学生课堂展示的评价方式应体现生评生、师平生体现,即时评价的针对性和及时性。

余角和补角教学目标篇四

对绝大多数同学来说,还是比较好,但极少数同学还是比较差。对于灵活性较强的问题,解题能力较差,知识的综合运用能力欠缺,特别是上课时有一个小组没有能按时回答问题。

原理分析:

(1)个别学生原有基础较差,个体之间的差异较大。

(2)本人对这个班级的定位太高,在教学上有些好高骛远,对于基础较差同学的学习效果不是太重视,学生们接受地有点囫囵吞枣。

(1)注意基本知识和基本技能的教学,一步一个脚印教深教透。

(2)多调动同学的学习兴趣,注意关注基础较差的同学,注重他们的听课效果。

(3)注重较好同学的能力培养。

(4)课堂教学中一些小细节的把握不够仔细,注意学生做题犯的错误时的及时纠正。

余角和补角教学目标篇五

本节课是初一几何起始章节的新授课,在教学中,除了学科识以外还应传达给学生什么观念呢?我一直思考这个问题。

布鲁纳说:“学习任何学科,主要是要使学生掌握这门学科的基本结构,同时也要掌握研究这一学科的基本态度和方法。”本节课力求让学生通过起始新授课的学习,对初中几何的基本结构和研究方法有个基本了解!

1.借助理论思想――指导教学设计。

范希尔几何思维理论将几何思维水平划分为五级,水平0:视觉;水平1:分析;水平2:非形式化的演绎;水平3:形式化的演绎;水平4:严密性。根据该理论对几何思维水平的界定,小学生的几何思维水平基本处于视觉和分析水平,这一阶段的儿童主要通过感官获得数学概念,能按照图形的构成要素及特征分析简单图形的性质,能够根据图形的某一性质对其分类,但是正确使用定义的能力较弱,无法建立起图形某些性质之间的联系。进入七年级,对于学生几何思维水平的要求应该逐步达到水平2和水平3,开始认识到图形和图形之间的联系。从思想上开始理解演绎推理的方法,逐渐了解到证明的重要性,确信几何定理必须要经过演绎推理才能建立。

根据该理论,小初几何研究对象和思维差异明显,小学研究对象以单个图形为主,推理方式主要是直观合情推理,比如小学主要研究单个角的大小问题,能够通过度量法直观的比较两个角的大小问题。初中不仅研究单个图形更侧重多个图形,推理方式主要是抽象演绎推理。

根据该理论,本节课讲互余和互补,更侧重于从抽象演绎推理的角度研究两个角的数量问题,让学生初步感受利用定义、公理、定理进行演绎推理的方式,由非严谨的说理逐步向严谨的说点理过渡,这是严谨思维的一次飞跃。

2.突出概念对比――体会定义几何概念的视角。

本节课之前已经有了角的定义:有公共端点的两条射线组成的图形叫角。角的定义方式和余角、补角的定义方式有什么区别呢?对比发现,前者是从两条射线的位置关系定义的概念,而后者是从数量关系定义的概念,在教学中可以让学生体会这一点。

那么,这两种定义方式的本质区别是什么?以位置关系定义的概念可以从数量上对其进行分类。而以数量关系定义的概念可以按照位置关系进行分类。比如,两个互为补角的角可以从位置角度分成邻补角和非邻补角。从一定程度上讲,定义的方式已经决定了分类的方式。即定义的内涵决定了定义的外延。

其次,本节课还让学生进一步体会,位置和数量的不对称性,即:位置确定,数量随即确定;而数量确定,位置不一定确定。比如,互为余角的两个角,位置上是不受任何约束的。

在教学中既要让学生体会两种不同的定义方式,也就是概念的内涵问题。也要让学生体会不同的定义方式产生的分类问题,也就是概念的外延问题。

3.性质辨析――领悟研究两个图形关系的方式。

余角和补角的性质本身不难理解,可以作为今后推理的依据。并可推广到一般情况,即如果两个角与第三个角的和为同一值,那么这两个角相等。

它的另外一个价值在于给出了研究问题的一种方向,那就是借助两角与第三个角的关系确定两角的数量关系。即通过第三个量建立起两个图形的相关性。

后续在研究平行线的性质与判定时,还会继续借助第三条截线建立两角之间的数量和位置关系,他们共同之处在于――借助中间要素(中介角或关联线)去研究两个角的关系。这种研究问题的方式也为今后研究其它复杂几何问题开了先河,因此本节课对今后几何的学习有方向上的引领作用。

整体上,互余和互补虽然与位置无关,但是初中讲互余和互补,又不能脱离位置关系谈互余和互补,这是平面几何的特点决定的;因此,本节课没有回避位置关系。初三和高中阶段,尤其是高中阶段,学生将从数量的`角度,进一步体会互余或互补的两个角的三角函数值具有很好的相关性。

4.全面梳理公理化结构――感受公理化思想。

本节课内容上没有难于理解的知识,但是背后实际上蕴含了丰富的营养。教学中,不仅限于让学生掌握学习内容,更重要的是感受知识背后传达的学科观念。让学生通过平面几何起始章的终结课,再次体会公理化思想,体会定义几何概念的视角,感受研究两个图形的数量关系时,可以借助第三个量来研究。从一开始既见树木,也见森林,让学生对初中几何有个整体感知。

欧氏几何是根基稳固的大厦,这座大厦最核心的就是由定义、公设、公理、定理组成的公理化体系。本节课并没有局限于散状的知识,而是立意高远,突出了定义―基本事实、公理―定理(教材视角)这一初中几何研究的主线,让学生通过平面几何起始章的终结课了解整个平面几何学科的结构框架,初步感受公理化思想。

总之,这节课立意深远,注重整体把握几何教学,通过这一章持续的渗透,学生基本能够体会初中几何研究的方法、视角,有一定的示范价值。

余角和补角教学目标篇六

“余角和补角”是一节探究性活动课,采用了“提出问题——猜想结论——验证结论——应用结论”这样一个基本模式,课堂设计流畅,学生充分思考、活动,课堂气氛活跃。

(一)创设情境,引入概念。

以往在教授这一课时,教师往往平铺直叙的引入余角、补角概念,而王靓老师通过比萨斜塔这一学生熟知的著名建筑引出概念,不但使学生能充分理解概念,并且可以充分引起学生的有意注意,一下子把学生吸引到课堂上来。

(二)落实双基。

做课不仅是一种展示,更重要的是让学生掌握必要的知识。活动二的设计充分体现了这一点,并且在解题过程中渗透了方程思想的应用,既是对上一章知识的应用和巩固,也为今后的学习打下基础。

(三)活动设计,训练学生灵活解题能力。

活动五的设计引导学生利用三角板构造满足互余情况的特殊位置关系的图形,了解特殊位置关系与特殊数量关系的对应,在活动中充分运用新学的知识,培养学生的创造性和探索精神,充分调动了学生积极思考。

(四)评价方案设计合理,具有综合性。

为了综合考察学生的基本技能和能力水平,让不同层次的学生都有展示的机会,设计了一道多步骤评价方案,通过此问题既能检验学生上课的质量,同时也给学有余力的学生提供了一个提高的机会。

整节课一气呵成,达到了提高学生素质及培养学习几何兴趣的目的,也使学生看到了数学来源于生活、应用于生活的实质。

余角和补角教学目标篇七

新课标指出:教师在教学中要有自己的独立性,根据自己的教学实际情况去创造性地运用教材。故本节课重新设计了教材的呈现形式。本节设计重点突破互余的概念的形成过程,探索互余的性质,然后类比迁移互补的.概念及性质,通过解剖麻雀的方法,培养学生自主获取知识的能力。而类比既是建构性的思维,又是反思性的问题,教学中经常由此及彼地进行类比的联想,然后进行大胆猜测,实现认知上的突破,是学生养成类比质疑的习惯,在学习、讨论中,不断地发现问题、解决问题,从而达到认识事物本质的有效办法之一。

本节课的设计还有一点比较满意,就是作已知角的余角。学生有的用量角器度量的方法,有的以角的一边构造直角得出余角的不同方案。在用三角板拼图的设计过程中,学生不同方法很多差异较大。让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。尝试评价不同方法之间的差别。我们在教学中应鼓励这种差异的存在。

余角和补角教学目标篇八

对绝大多数同学来说,还是比较好,但极少数同学还是比较差。对于灵活性较强的问题,解题能力较差,知识的综合运用能力欠缺,特别是上课时有一个小组没有能按时回答出问题。

原理分析:

(1)个别学生原有基础较差,个体之间的差异较大。(2)本人对这个班级的定位太高,在教学上有些好高骛远,对于基础较差同学的学习效果不是太重视,学生们接受地有点囫囵吞枣。

二、整改方法。

(1)注意基本知识和基本技能的教学,一步一个脚印教深教透。

(2)多调动同学的学习兴趣,注意关注基础较差的同学,注重他们的听课效果。

(3)注重较好同学的能力培养。

(4)课堂教学中一些小细节的把握不够仔细,注意学生做题犯的错误时的及时纠正。

余角和补角教学目标篇九

1、朴实:这是一堂探讨概念性的课,本着每位学生都能掌握的原则,上这堂课我没有设计比较花炮的东西,而是比较实在地把学生所要掌握的内容一点一点的教给他们,从学生的掌握情况看,这是一堂比较成功的课。

2、课堂设计:本堂课先介绍了余角的概念以及互为余角的性质,再通过类比的方法得出补角的概念以及互为补角的性质。最后在总结的时候,我采取的是列表格的形式,这样不仅能让学生清楚的看出互为余角与补角的区别和联系,更能让学生的知识系统化和完整化;最后一道题目看谁最聪明的设计,一下子提高了学生的学习兴趣,学生们都争先恐后的回答,并想出了很多好的方法来解决实际问题,这样既提高了学生的兴趣,又发散了他们的思维,把数学知识与生活实际问题联系了起来,让学生觉得学数学时很有用的。

1、板书:在书写板书上,不怎么具体,板书上应该有本节课的重点内容,而我在写板书的时候,具体的重点内容不明确,也有一些没写上去。板书问题是我这个学期一直存在的比较严重的一个问题,今后在教学上应该更加注意这方面的书写。2、学生的动手实践:本节课学生的动手实践比较少,互为余角的性质是本节课的重点和难点,应该让学生自己合作学习来得出,这样才能加深对此性质的理解,并能很好的掌握;得出互为补角的性质时也应让学生自己得出。可以说在一定程度上我还没有放手让学生自己去学习,在今后教学中,我也应该多让学生动手实践,充分的相信学生。

文档为doc格式。

余角和补角教学目标篇十

本节课是本章的重要组成部分,作为实验几何向证明几何过渡的重要过程,为以后证明角的相等做铺垫,也为培养和发展学生的逻辑思维能力、观察分析能力、归纳演绎能力打下基础。所以我在在上课前认真钻研教材,熟练掌握教学内容,充分了解教材的重点、难点以及新旧知识间的内在联系,同时还要充分了解学生,包括学生的心理状态、思维特点、知识水平和生活经验、能力等。

本节课余角和补角概念的学习采用的是与实际生活实践类比的思想,利用实际物体――比萨斜塔的图片,构建新的概念。通过学生观察分析,猜想,合作交流,体验并感悟到余角的概念和性质,让学生自己归纳性质用自己的语言描述性质,在小组交流中完善表述,这样既调动了学生学习数学的积极性与主动性,增强了学生参与数学活动的意识又培养了学生的动手实践能力,观察能力归纳能力。之后,用类比的思想同样归纳了补角的概念和性质。同时,向学生渗透了实践――认识――再实践――再认识的辨证观点。

最后在总结的时候,我采取的是列表格的形式,这样不仅能让学生清楚的看出互为余角与补角的区别和联系,更能让学生的知识系统化和完整化;最后一道题目看谁最聪明的设计,一下子提高了学生的学习兴趣,学生们都争先恐后的回答,并想出了很多好的方法来解决实际问题,这样既提高了学生的.兴趣,又发散了他们的思维,把数学知识与生活实际问题联系了起来,让学生觉得学数学时很有用的这节课中,能够和学生良好的配合完成教学。整节课虽然完整的上完了,可是在类比补角的时候,整个流程显得比较急躁,可以将内容讲的更详实、缓慢些,不用对练习的完成量多做要求。典型例题大部分学生可以完成,但是个别学生的回答没有给予及时的肯定,对学生的鼓励措施不够。因此对于一堂真正好的课,应该时刻注意着学生显现出的丝毫变化,抓住机会,完善学生的知识系统。

余角和补角教学目标篇十一

本节内容要求学生在对平面图形和立体图形知识的有一定了解的基础上,对简单图形——角的一个应用方面的概念和性质有个根本的了解,并进一步掌握数学中的几何语言的描述。新课程标准中指出,“动手实践,自主探索于合作交流是学生学习数学的重要方式”。课堂教学是学校教育的“主战场”,作为教师就要把指导学生养成自主、合作、探索的学习方式落实在课堂教学的实践中,而不仅仅是停留在理论层面上,教学中,教师可结合教材内容,并充分考虑初中学生的认知特点(如独立思考和探究的愿望和能力有所提高,并能在探究的过程中形成自己的观点,能在倾听他人意见的过程中逐渐完善自己的想法等等),把一些知识形成过程的典型材料设计为探究活动,充分拓宽学生探究与交流的空间,使学生经历观察、实验、猜测、推理、交流、反思等活动。

以下是对这一节课的一些体会:

反思一:关于课前准备的自我反思。

的一个培养的机会。本节课余角和补角概念的学习是通过学生观察分析,猜想,合作交流,体验并感悟到余角的概念和性质,让学生自己归纳性质用自己的语言描述性质,在小组交流中完善表述,这样既调动了学生学习数学的积极性与主动性,增强了学生参与数学活动的意识又培养了学生的动手实践能力,观察能力归纳能力。之后,用类比的思想同样归纳了补角的概念和性质。同时,向学生渗透了实践——认识——再实践——再认识的辨证观点。

(二)了解教学知识与现实生活实际有何联系。在整个教学中有教师扮演组织者、指导者的角色,把关键的知识点转化成问题,指出生活中处处存在数学,数学是描述生活的重要手段。

(三)根据教学内容与学生实际情况,对教学内容进行一定的把握。比如对例子的数量及难度要有所选择,设置备选题,依学生的接受情况来决定是否要进行练习,培养学生运用所学知识解决实际问题的能力,引导学生进行探究,帮助学生建构自己的知识及思维方式。

反思二:关于教学实践中的自我反思。

(一)课堂教学中教师要注意观察课堂学生的学习气氛,适时进行调控,采取各种教学手段,在教学中提高教学资源的利用效率,同时还要注意捕捉师生、学生之间互动过程中产生的教学资源,以激活课堂教学,激发学生学习兴趣,促使学生积极主动的参与到教学活动。

(二)教师要关注学生的学习活动过程,注意调节学习活动,交换组织学习的活动方式,促使学生更有效的学习。在这一节课中采用了教师引导、启发得到结论这一主要的活动方式,让学生的思维处于活跃的状态,有效的引导有助于自主形成知识。对于新知识的掌握,由自己的探索得到的答案与由老师告知结果的答案是不一样的记忆效果。

(二)对教师在课堂教学实施中的表现反思。

这节课中,能够和学生良好的配合完成教学。整节课虽然完整的上完了,可是在类比补角的时候,整个流程显得比较急躁,可以将内容讲的更详实、缓慢些,不用对练习的完成量多做要求。典型例题大部分学生可以完成,但是个别学生的回答没有给予及时的肯定,对学生的鼓励措施不够。因此对于一堂真正好的课,应该时刻注意着学生显现出的丝毫变化,抓住机会,完善学生的知识系统。

余角和补角教学目标篇十二

1、朴实:这是一堂探讨概念性的课,本着每位学生都能掌握的原则,上这堂课我没有设计比较花炮的东西,而是比较实在地把学生所要掌握的内容一点一点的教给他们,从学生的掌握情况看,这是一堂比较成功的课。

2、课堂设计:本堂课先介绍了余角的概念以及互为余角的性质,再通过类比的方法得出补角的概念以及互为补角的性质。最后在总结的时候,我采取的是列表格的形式,这样不仅能让学生清楚的看出互为余角与补角的区别和联系,更能让学生的知识系统化和完整化;最后一道题目看谁最聪明的设计,一下子提高了学生的学习兴趣,学生们都争先恐后的回答,并想出了很多好的方法来解决实际问题,这样既提高了学生的兴趣,又发散了他们的思维,把数学知识与生活实际问题联系了起来,让学生觉得学数学时很有用的。

不足之处在于:

1、板书:在书写板书上,不怎么具体,板书上应该有本节课的重点内容,而我在写板书的时候,具体的重点内容不明确,也有一些没写上去。板书问题是我这个学期一直存在的比较严重的一个问题,今后在教学上应该更加注意这方面的书写。2、学生的动手实践:本节课学生的动手实践比较少,互为余角的性质是本节课的重点和难点,应该让学生自己合作学习来得出,这样才能加深对此性质的理解,并能很好的掌握;得出互为补角的.性质时也应让学生自己得出。可以说在一定程度上我还没有放手让学生自己去学习,在今后教学中,我也应该多让学生动手实践,充分的相信学生。

新课标指出:教师在教学中要有自己的独立性,根据自己的教学实际情况去创造性地运用教材。故本节课重新设计了教材的呈现形式。本节设计重点突破互余的概念的形成过程,探索互余的性质,然后类比迁移互补的概念及性质,通过解剖麻雀的方法,培养学生自主获取知识的能力。而类比既是建构性的思维,又是反思性的问题,教学中经常由此及彼地进行类比的联想,然后进行大胆猜测,实现认知上的突破,是学生养成类比质疑的习惯,在学习、讨论中,不断地发现问题、解决问题,从而达到认识事物本质的有效办法之一。

本节课的设计还有一点比较满意,就是作已知角的余角。学生有的用量。

角器度量的方法,有的以角的一边构造直角得出余角的不同方案。在用三角板拼图的设计过程中,学生不同方法很多差异较大。让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。尝试评价不同方法之间的差别。我们在教学中应鼓励这种差异的存在。

您可能关注的文档