2023年高等数学教学心得(汇总8篇)

  • 上传日期:2023-11-19 12:45:05 |
  • ZTFB |
  • 8页

总结是我们对自己的一种反思和总结,可以提高我们的经验和能力。写作之前,我们可以做一些新思维的练习,以提高我们的创造力和灵感。总结可以帮助我们发现自己的优点和不足,为未来的发展提供参考。

高等数学教学心得篇一

在成教的高等数学教学中,根据教学大纲的要求,适当对高等数学的教学内容进行修改,尤其是在讲课的方式中,对各个知识点的讲解要把握住“度”。比如,函数的概念在各个教材中对函数的定义写得都比较抽象,那么在面对成教学生的教学过程中可以强调学生们抓住函数定义的关键词“唯一”,对于自变量的任意一个取值,因变量必须有唯一的值与之对应,所以在理解函数定义的时候,最关键就是理解“唯一”两个字[3]。在授课过程中,把掌握基本知识、基本概念、基本定理放在首位,提高学生们解决问题、分析问题的能力,不必过分追求高等数学的严密性。又比如讲解导数定义时,可以引入物理学中速度的相关知识,从路程与速度之间的关系引入导数的定义,使学生们更容易理解导数的概念。教学中注重新旧知识之间的联系,帮助学生建立起知识体系,降低知识的难度。

当代的高等数学知识已应用于各个学科领域,比如工科、经济学、管理学,但是绝大多数高等数学教材重理论轻应用,对于高等数学在应用方面的重视程度不够。教师在高等数学的讲授过程中,应针对不同的专业讲授的侧重点不同,当然这对教师也提出了更高的要求,要求授课教师不仅仅掌握数学知识,对其他专业课的知识也应该有所涉猎。在讲授过程中,应尽量与该专业的专业知识相结合。比如对于经管类学生,当讲到函数单调性判别的时候,应把该节内容与价格策略的制定相结合,把经济学中价格弹性的概念与函数单调性的判别相结合,以此为根据,制定价格策略,并可以把此概念与生活中遇到的实际情况相结合。根据函数的单调性的相关知识可以得到结论,对于富有弹性的商品,如电脑、手机,应该适当地提高商品的价格,可以使总收益增加;对于缺乏弹性的商品,如粮食、商品房,应该适当地降低商品的价格,可以使总收益增加。即增加了课堂的趣味性,又能把抽象的数学知识与专业课知识相结合。

3.1.3把数学建模的相关知识运用于教学。

在高等数学的教学中,数学软件的应用已相当普遍,如matlab、lingo等,对于数学上繁琐的计算,借助于数学软件更容易实现。在实际的教学过程中,可以把数学建模的思想运用到成教的课堂上,并借助数学软件来实现,可以让学生们见识到数学强大的解决实际问题的力量。在面对成教学生的教学过程中,把数学建模的相关知识运用于教学,可以使学生们在学习数学知识的同时,掌握解决问题、分析问题的方法,培养学生的数学思维能力。

3.2.1培养学生的自学能力。

在教学方法上,应运用多元化的教学模式,不拘泥于传统的教学方法,除了课堂讲授外,还可以引导学生去思考学习,成立小组讨论等方法。根据笔者多年在成教授课的经验,多种教学方法的搭配,不仅增加了课堂活跃的气氛,也提高了学生们学习的兴趣,把被动学习变为主动学习,对于基础较差的成教学生,可以启发他们多思考,促进学生思维的发展。在学习方法上,强调自学的重要性,引导学生联想沟通各个概念、定理之间的关系,找到解决数学问题的办法。

3.2.2现代教学技术的应用。

在多媒体出现之前,高等数学的教学仅仅是黑板加粉笔的模式,多媒体的出现彻底地改变了这一教学模式,运用多媒体教学不仅丰富了课堂的内容,而且能够形象生动地讲解高等数学概念,比如导数的几何意义,仅仅借助于黑板加粉笔,并不能很好地表现,尤其是导数的定义本质上是一种极限,而极限是一个动态的变化过程,借助于多媒体手段可以很轻松地实现曲线的割线是如何随着自变量的改变量而趋向于零,使学生能够更形象地理解导数的几何意义。又比如定积分的概念,由于过去传统教学模式的局限性,完全靠教师的教学经验去描述定积分的几何意义,借助于多媒体设备,可以运用数学软件设计动画图像,动态地描述定积分的几何意义,可以更加深学生们对定积分定义的理解。多媒体教学使得教学更加直观生动,当然,传统的教学手段也不可少,在具体的教学实际中,应把多媒体教学与传统的教学手段相结合,这样会使教学效果更好。

3.2.3通过互联网建立答疑系统。

由于成教学生普遍基础较差,对抽象的高等数学知识理解起来会有一定的难度,这就要求授课教师能及时解答学生们提出的问题。在传统的教学过程中,很多教师往往只注重对题目的解释,而忽略解题的思维过程。通过互联网技术,将教师对题目的解答经验放在互联网上,建立解答系统,并定期更新,不断地丰富解答方法和思路,使学生们可以非常方便地获取相关知识,并建立“解答问题聊天室”或者是通过“yy语音”及时解答学生们提出的问题。在“解答问题聊天室”中有很多题目同学们通过相互间的讨论就可以得到答案,教师只需做适当的引导即可,这样不仅把教师从重复性劳动中解脱出来,而且还可以使得同学们通过讨论,加强对知识的理解。

高等数学分层次教学是因材施教原则在高等数学教学中的具体运用,它根据因材施教的原则,对不同成绩、不同基础的学生提出差异化的教学目标,运用不同的教学手段,通过不同的教学过程来实施高等数学的教学工作[4]。这种教学方法更适合于数学基础不同的学生,更符合学生的实际情况,可以有效地调动学生的学习积极性,尽可能地挖掘学生的潜力。在我国教育教学的很多学科中都有分层次教学的相关理论研究,但是对于如何将分层次教学运用于成人教育的高等数学教学中,相关的理论叙述很少。鉴于全日制学生和成教学生有很大的区别,如果直接把已有的相关理论和经验运用于成教高等数学教学中,未必会取得很好的效果,所以,必须结合成人教育的特殊情况,针对成教学生设计更适合的分层次教学方法。比如,针对不同数学基础的成人教育学生制定不同的教学目标,改革分班授课的传统模式,引入分级分班授课。

4结束语。

由于成人教育自身的特点,对于成教学生的高等数学教学是一个非常有必要深入研究的课题。不仅仅要因材施教,更重要的是,应该“因人施教”,成人教育中的高等数学教学需要与时俱进,不断调整教学方法来提高教学质量,达到教学目的。作为该课程的授课教师,应该始终将数学课程的教学方法与日常的教学科研紧密结合起来,不断地更新教学观念,为培养具有较高数学素质的科技人才做出应有的贡献。

【参考文献】。

[1]张芯蕊.浅谈成人高等数学的教学方法[j].高校教育研究,,(4):177—179.

[2]黄翔,李开慧.基于数学新课标的高师数学教育课程改革研究与实践[j].重庆师范大学学报(自然科学版),,(7):116—118.

[3]邵志强.提高高等数学教学质量的有效途径[j].福州大学学报(哲学社会科学版),,(9):36—37.

[4]冯保平.成人教育中高等数学分层次教学探索[j].现代企业教育,,(6):121—122.

高等数学教学心得篇二

立体化教材在国外称为“integratedtextbook/coursebook”,在国内最早则出现在教育部《关于加强高等学校本科教学工作提高教学质量的若干意见》中,也叫“一体化教材”或“多元化教材”。立体化教材相对传统纸质教材是指以计算机和网络为支撑平台,运用多种多元化教学工具,将教学内容、教学方法、教学重点和教学效果进行整合,按照先进的一体化思路设计出适合于多元化教学的系统化教学材料。近年来,立体化教材得到了快速的发展,以网络和多媒体为代表的现代信息技术的发展给立体化教材的发展提供了契机。

立体化教材越来越体现其优越性。它在主干教材的基础上开发多种辅助教学资源,实现人机对话,交互性强;它表现形式灵活,课程设置更符合学生的认识规律和思维过程,更大程度地帮助学生知识的建构和拓展;它直观形象,通过实验演示等方式展示课程的相关定义、定理和方法;它操作简单,可反复观看教学课件和视频等,不受时间和次数的局限;同时其趣味性和艺术性有利于促进学习者的学习兴趣。

由于高等数学其具有抽象性、系统性及应用广泛性的特点,因而其立体化教材的构建和设计只有符合本身的特点和规律,才能较大成效地发挥立体化教材的作用。一般地,立体化教材的设置应该包含:主干教材、课程方案、学习指导、电子教案、课件、教学视频、数学实验、习题库、学习辅导答疑、学习论坛讨论等。本文在立体化教材设置上,重点考虑高等数学立体化教材的几种主要组成要素:教材(即传统的纸质教材,与立体化教材的开发网站相配套)、教案、课件、教学视频、数学实验、习题库等,并讨论它们之间的关系。

一、立体化教材应该以教材为中心,做到四个“体现”。

1、教学视频是对教材内容的可视化传递。

教学视频是指把要传授给学习者的知识、技能等内容按照教学大纲的要求,经由教师或专业制作人员运用技术手段,整合图、文、声、像等各种信息,生成视频文件并发布供广大学习者学习使用的教学资源。相对于静态的文字教材,视频教材的优势非常明显。它不仅在教学过程中对知识传递和表达,诱导学习者思考,提高学习的高效性,而且还集合了知识性、教育性、科学性、艺术性和趣味性。视频教材已经是我国教育教学模式的重要形式。正如萨尔曼可汗在ted的预言“视频重塑教育”那样,视频教材正在不断地促进我国教育教学手段现代化进程。

然而“万变不离其宗”,教学视频最终所体现的核心部分仍然是教材的内容,即教材的知识性。因而,高等数学教学视频的基本组织形式应该注重对每一章的每一节课(或一个知识点)的教学过程进行录制和教学设计。高等数学教学视频的设计单位就是课堂教学设计。课堂教学设计应根据课程标准规定的总教学目标,对教学内容进行分解,对教学对象进行认真分析,在此基础上得出每个章节、单元的教学目标和各知识点同时选择教学策略,制定教学过程,最终进行视频录制。

2、教案、课件应体现教材内容的系统性和思想性。

保持课程应有的系统性是指教案、课件的组织过程应该遵循教材的组织规律。相对于其它课程,高等数学的教学内容是稳定的。教学内容的组织总是从“函数与极限”开始,然后是“连续”与“导数”,再而是“微分及中值定理”……从微分到积分,从不定积分到定积分,从一元微积分再到多元微积分。因而,教案及教学课件的内容及其织组顺序上,应保持课程应有的`系统性。

保持课程应有的思想性是指教案、课件应该正确保持定义的阐述、定理的证明、知识间逻辑关系,同时对内容的增删应该适当有度。高等数学的抽象思维占主导地位,它的各个章节、各知识块间内在的联系紧密,教案的设计要思路清晰明白。传统的教案和课件的使用者都是教师,但立体化教材的教案和课件将面对学生,因而教案和课件的内容更应该与教材相呼应,紧扣教材的内容,通过多媒体课件,把规范的、理论性的教材语言,转换成学生容易理解、较易接受、喜爱的媒体语言的表达形式,通过媒体语言来激活教材语言。在立体化教材设计上,教案、课件仍是源于教材,还原于教材。

3、数学实验应该融入教材,数学实验应体现教材的实验要求。

一本成熟的高等数学教材必须包含实验环节,实验内容由浅入深,理论与实验相辅,突出高等数学的基础理论知识在实践中的应用。为了让学生更好地理解基本概念、基本原理,并将其应用到实践当中去,在高等数学的课堂教学中必须实验课时。学生通过数学软件(例如matlab),实现对极限、微积分、级数等基本概念的可视化,化抽象为形象,化无形为有形,既增加了高等数学趣味性和形象性,又增加了对其理解性和应用性。

高等数学立体化教材的实验部分一般分两个层次,第一个层次是结合课本内容进行实验,第二个层次是运用以数学实验为介质进行数学建模。前者是基础实验,针对每个章节的内容进行相应的实验设计,达到理论理实验的统一。例如在了解单叶双曲面和马鞍面都是直纹面这一结论的同时,如若再用实验加以验证,这种教学效果是显著的。后者是我们所熟悉的数学建模,它要求学生有较高的综合素质,包括理论基础、分析水平和实验水平。数学建模已经在大学教育中逐步开展,许多院校正在将数学建模与教学改革相结合,将数学建模作为《高等数学》的教学改革和培养应用型科技人才的一个重要方面。因而,《高等数学》教学实验应该体现立体化教材这两方面的要求:一方面,让学生更好地理解基本概念、基本原理;另一方面,让学生学会“建模”动手解决实际问题,以加深对所学过的知识的理解,使学生充分感受、领悟“数学实验”中最本质的内涵。

4、习题库应体现教材的基础性和重难点。

习题库是立体化教材的重要部分,它可以提高教材的利用率,为教材用户提供良好的服务,与制作学习辅助材料光盘不同,教材配套题库系统应该提供练习和测试的功能。特别是对自学要求较强的对象,他们可能利用碎片时间进行学习,或者在课堂上知识接受能力较差,需要自主学习或补习完成课程教学任务。因而,设计针对这类自学型学生的课程习题库变得尤为重要。

习题库应体现教材的基础性是指习题库应该提供整本教材的资料,接照每个章节设置各种类型的习题。同时应该提供这些习题的答案以供自习的学生进行参考。习题库的测试功能体现在能根据不同学生的知识层次、学习进度、兴趣倾向等提供相应的试卷。习题库应该能够实现人工选题的功能,按章节或类型选题以及题量的多少进行自主或随机选择,同时对测试的结果自动生成并附带参考答案。习题库应体现教材的重难点是指习题的总体难度应该与教材的总体难度保持一致,尽量减少难偏题的数量。

二、立体化教材的核心技术是“立体化”,做到四个“一致”。

1、教学视频与教案、课件的一致。

教学视频是对教学内容的传达。视频教学以教案、课件为依据,制定教学过程结构方案及录制步骤。教学视频应该从四方面进行把握:

(1)视频教学内容的编排应该按照教案的顺序;

(2)教学视频的重难点应体现教案的要求;

(3)用于录制教学视频的课件应该与立体化教材中的课件一致;

(4)教学视频的组织形式应与课件保持一致。

2、教学视频与习题库的一致。

教学视频不仅是理论课的视频,同时应该有习题课的视频。在习题课视频的典型习题应该为习题库的例题,与习题库保持一致。但并不是习题库所有的习题都制作成视频,这样习题库就失去意义。习题的教学视频,能更好地帮助学生进行自主学习,举一反三,达到知识的内化。另一方面,习题库为视频教学提供练习、学习、测试功能,两者在题型、重难点上保持一致。

3、数学实验与教案、课件的一致。

数学实验与教案、课件的一致是指:

(1)教案、课件中的实验例子应该与数学实验的例子内容上一致;

(2)数学实验的编排顺序应该与教案、课件的设计顺序一致;

(3)数学实验的重难点应该与教案的要求保持一致。

4、数学实验与习题库的一致。

一方面,教学实验应有典型的习题例题。例如极限、两个重要极限、导数、定积分、不定积分、反常积分、曲面与方程、偏导数、重积分、级数等等。另一方面,习题库中应该有数学实验部分,两者在题型、重难点上应该保持一致。

三、立体化教材的最终效果是实现学生的个性化学习。

个性化学习是一种旨在挖掘学习者自身的智慧和潜能、从而最大化地体现学习者的自我价值的学习模式。立体化教材为个性化学习提供了支持,它打破了统一起点、统一进度、统一内容的局限性,使学习者能够按自己的进度选择合适的学习资源开展学习。基于立体化教材的学习可以使学习者在学习内容的选择和学习过程的操控方面获得极大的自由度,能够对不同类型的学生提供个性化的支持服务,彰显关注个体、崇尚个性的价值观。学生借助网络终端在任何时间、任何地点开展学习。强调在有限时间内学习短小的、松散连接的信息单元,是当今社会人们按照自己的需要和兴趣学习知识的新途径。

立体化教材借助广泛普及的多媒体技术和网络平台,渗透到学生个性化学习当中。学习者可以反复观看或随时暂停视频,结合课件及教案,使用强大功能的习题库,获得高等数学的知识。这种教学模式有助于实现学生的个性化学习。随着现代教育技术的不断发展,运用立体化教材进行教学,将逐步成为实施高等数学教学改革的一种有效手段。

高等数学教学心得篇三

经济学是考察社会经济现象、行为及其规律的学科,而计量经济学则是揭示经济学理论所考察的社会经济现象之间的数量规律。计量经济学的学习与应用能力,关键取决于能否运用经济学的思维方式观察理解经济现象,能否构建恰当的经济模型,能否准确进行参数估计与模型检验,使研究结论客观反映经济规律,进而为政策决策提供有意义的参考。目前,虽然计量经济学已被列为高等院校经管类各专业的重要课程,但我国计量经济学教学与研究与发达国家相比还有较大差距,进一步培养好计量经济学人才任重道远。为更好提升学生学习和应用能力,应着重从以下方面入手进行计量经济学人才的培养。

(一)有助于培养学生观察与分析经济现象的能力。

计量经济学重在培养学生基于经济学理论观察社会经济现象,勇于提出问题。譬如,在研究通货膨胀时,学生应回顾成本推动型、需求拉动型等通胀形成机制,思考这些理论能否解释现实。以始于下半年的通货膨胀为例,显然,每个人都经历与感知到了该轮通货膨胀对自身的影响,企业家感觉到原材料上涨,居民感觉到菜价上涨,学生发现食堂饭菜价格上升。对于计量经济学的学生来说,首先要思考此轮通胀的原因与货币供给过多是否相关,进而要思考此轮通胀与过去通胀是否存在相同特征。教师要将这些问题引入课堂,适时引导学生思考与研究社会经济现象,这实质就是培养学生学习与研究计量经济学的能力。

(二)有助于培养学生研究社会经济现象的能力。

计量经济学教学是引导学生应用经济学理论理解经济问题的过程。由于社会经济现象的形成机制非常复杂,对同一经济现象经济学家存在不同的看法。经济学理论和计量经济学方法发展日新月异,这种快速的知识更新使得师生需要不断学习与研究。此外,经济现象本身也伴随经济体制、运行机制与经济结构的变化而发生复杂变化,对这些日益复杂的现实经济现象的深入考察,也考验着我们运用计量经济模型的能力。因此,深刻理解经济现象及其背后的机制,重在能否正确应用计量经济学。仍以通胀现象为例,学生可能首先联想到的是货币需求函数,此时,教师可以引导学生比较分析消费价格指数(cpi)与广义货币(m2)的时间序列数据。通过观察,m2增速于20起快速下降,但与此同时,通胀却表现出持续上涨的态势。该现象提醒我们,若以非线性货币需求函数建模,则可以揭示通胀与货币需求间的复杂关系。为此,适时引导学生针对我国特定的数据,探索性研究通胀与货币需求间的复杂关系,能够培养其学习与解决问题的能力。

(三)有助于培养学生研究计量经济理论的能力。

高等教育的重要落脚点是开发学生创新能力。在计量经济学学习中,学生的创新能力体现于能否发展计量经济学理论。比如,通过引导学生观察通胀现象,逐步提出以下问题:如何检验通货膨胀与m2是否是平稳序列?这两个变量是否存在协整关系?该关系是否具有非对称、非线性的特征?怎样检验与估计非对称、非线性的长期均衡关系?要回答以上问题,必须学习与发展计量理论,这需要我们拓展既有非平稳时间序列分析的理论与方法。因此,在研究中准确理解与应用相关理论与方法,特别是针对数据特征拓展计量理论,是培养与提升学生学习与应用能力的重点。

现代计量经济学的主要内容有:单位根检验与基于非平稳变量的建模技术;描述经济现象复杂动态性的模型;使用面板数据建立的模型。这些理论与方法与之前的经典计量经济学相比存在较大区别,为使教学与现代计量经济学的发展相适应,许多教师从教材改革、教学方法创新、突出实验教学等角度思考了计量经济学的教学方法改革。基于培养学生能力这一角度,借鉴以往教学改革的有益建议,结合我国计量经济学教学的现实状况,在计量经济学教学实践中,尝试从以下方面践行教学活动。

(一)立足引导与启发。

首先要清晰讲授相关概念、理论和方法,梳理知识之间的内在联系,适时对学生提出问题,培养其智能。例如,在讲解参数估计量的线性无偏最小方差性质中,应分析估计量是被解释变量的线性样本组合,从而引导学生认识估计量的本质,在理解估计量为一个随机变量的基础上,提出其是否服从特定的分布,最终引导学生理解估计量的方差以及对备选估计量的方差分析比较。基于估计量的有效性,再讲解渐进无偏与渐进最优估计量。接下来,适时展示线性无偏最小方差估计量的仿真结果,以此引导学生理解基本的计量经济理论,把引导学生学习和“教会学生学习”一体化。

(二)贯穿“理论、方法和应用”三位一体。

在教学中因势利导,从经典计量经济学适当拓展到现代计量经济学,并据此阐释计量经济学的相关理论,注重学生的学习反应,清晰介绍相关前沿理论。培养学生学习与应用计量经济学的能力重在:一要阐释回归分析的产生背景及其内涵;二是要培养学生根据我国数据构建计量模型的能力;三是要根据学生的实际情况对讲授内容进行延伸。计量经济学前沿的理论与方法集中在文献中,应根据学生的知识基础与结构从教材延伸至文献中。比如,在讲授异方差时,适时引出arch模型及其应用;在讲授面板模型时,适时延伸到动态面板模型与广义矩估计,并结合我国各省市城镇居民收入的面板数据,介绍动态面板模型和广义矩估计的分析思路。这种适时适度地引申新的知识,不但使学生深入理解基础概念,还启发学生拓展知识进行应用研究。

(三)充分利用蒙特卡洛仿真技术。

针对学生对计量经济学理论望而生畏的现状,我们利用蒙特卡洛仿真技术,通过编程将计量经济学中晦涩难懂的估计与检验理论转化为仿真结果,使得学生对抽象数学公式的模糊认识,转化为对仿真图形直观深入的理解。比如,线性无偏有效估计量的统计含义,既是参数估计中最基础的知识,又是大多数学生难懂的部分。在教学中采用仿真实验和仿真图形,让学生对抽象的计量理论产生直观的认识。又如,模型的误设定(如随机误差项的异方差性)及其导致的相应后果,是学习传统线性计量模型基本假设的重点,由于需要较强的数理统计学基础,这部分内容不但学生难理解,也是教师难以诠释清楚的问题。通过仿真实验结果能够形象展示违背经典计量经济假设下所导致的结果,促进学生对设定正确模型的重要意义产生深刻理解。这种仿真实验的教学模式不仅避免数学方面繁杂的推导过程,防止学生对计量经济理论“望而生畏”,还培养了其创新性的学习与研究能力。

不断创新教学方法,培养学生对计量经济学的学习兴趣与解决问题的能力,是“学生主动学习”与“干中学”这种新型教学理念的出发点与落脚点。在教学实践中,我们采用如下策略。

1.在课堂讲授中有意识地提出问题,与学生互动,共同讨论问题,适时延伸问题,将学生引入到对相关前沿文献的学习。例如,为何采用标准差衡量估计量的精度?ols与广义gmm的估计原理区别在哪?单位根检验统计量的概率分布为何区别于常规分布?通过不断提出类似问题,与学生“互动式”讨论并且解答问题,不仅可以启发学生的思维向深度与广度发展,还有助于激发其学习积极性。

2.在课堂教学中协调理论讲授、案例分析、实验教学之间的关系。课堂教学的核心是模型设定、参数估计与假设检验等,案例分析和实验教学的目的在于帮助学生直观理解理论和方法,并促进其学以致用,能够进行经济学研究,但绝对不应以软件操作教学替代基础理论的教学。在讲解理论的基础上,适时操作相关的计量经济学软件,解释软件输出结果,是实现理论教学和实验教学融合的有效路径。

3.通过案例与数据分析,建立恰当的计量经济学模型,引导学生灵活运用。不管是经济学理论,还是计量经济学的研究,经济现象及其背后的运行规律是学生关注的问题。基于我国的实际例子讲授计量模型,容易激发学生对计量经济学的学习兴趣,能够有效促进学生应用所学知识解决现实经济问题的能力。针对计量经济学“难教、难学、难懂”,上述教学方法体现“学生主动学习”和“干中学”等先进教学理论的精神实质,不仅使学生带着浓厚的兴趣学习计量经济学,也开拓了其知识视野,培养学习、研究与应用计量经济学的能力。

高等数学教学心得篇四

高等数学作为理工科大学生的一门必修的基础课,具有高度的抽象性、严密的逻辑性和广泛的应用性的特点,可以培养学生的抽象概括能力、逻辑思维能力、解决分析问题的能力,对科技进步也起着基础性推动作用。随着国家高等教育从精英型转入大众型,学生素质呈下降趋势,大部分学生在学习高等数学时感到困难,从而提高高等数学教学质量、改革高等数学教育教学方法已成为一个亟需解决的问题。

1.1误区一很多学生认为学数学没有用。

高中阶段学生已经接触到了高等数学中比较简单的极限、导数、定积分,但没有深入学习其概念、定义,高考也只是考了一点点,学生认为自己掌握了高等数学的知识,再学了也没有什幺用,在将来实际工作中也用不到数学。

1.2误区二高等数学具有很高的抽象性,很多学生觉得学也学不会。

现在学生不愿意动脑、动笔,碰到题目就在想答案。往往因为大学的高数题运算步骤比较多,想是想不出来的,不动笔又不画图,学生坐一会就有点困了,自然就认为高等数学非常难。

1.3误区三学生习惯于用中学的思维来解题。

很多学生学习数学的一些简单想法就是来解数学题,愿意用中学的方法去解决高等数学里的题目,只要能做出答案就行。在这种思想的影响下,不愿意去掌握定义、定理,做题少步骤或只有答案,但是有的题目肯本做不出来。随着学习的深入学生发现题目越来越不会做。

2.1端正学生学习态度。

许多同学认为,考上大学就可以放松了,自我要求标准降低了。只有有了明确的学习目标,端正学习态度,才能增加学习高等数学的动力。教师要以身作则,这要求教师热爱数学,对每节课都要以饱满的激情、对数学美的无限欣赏呈现在学生面前,教师积极地态度从而感染学生学习高等数学的热情。部分同学在应试教育的影响下,应经形成了消极的数学态度,教师还应该全方位、多角度扭转学生学习态度,如课下谈心谈话、建立互助兴趣小组、“一对一”结对子等方法,提高学生学习数学的动力。端正学生的学习态度首先从数学字母的写法、发信做起,很多学生古希腊字母不会写也不会读,上课多练习几遍,老师在做题过程中要注重解题的每一步骤,告诉学生每一步骤的重要性,做题中感受数学题的美。

2.2激发学生学习兴趣。

兴趣是最好的老师,只有有了学习高等数学的兴趣,学生才有了学习动力。在教学过程中,可以穿插一些关于数学的历史,数学家的故事,数学文化,来激发学生的兴趣。如定积分的讲解时,自然引入牛顿、莱布尼茨两位数学家的故事。教师在课堂讲解时,把抽象的问题具体化,通过几何画图提高学生的理解能力,这样学生才更容易接受。

2.3提高教师自身素质。

教师是课堂教育的主导者,是良好课堂氛围的主要营造者,要想学生紧跟教师讲课的思路,教师必须具有良好的人格魅力和深厚的专业功底。这就要求教师一方面要提高自身的文化底蕴,多读一些与另一方面刻苦专研专业知识、完善知识结构、提高教育教学能力,只有做到这样,教师的课堂教育才能吸引学生,课下学生才愿意并主动与教师交流、沟通。教师在上课的时候要身体力行,做题要在步骤上下功夫,解释每一步骤的重要性,既要用最少的步骤把题做完,又要讲解每一步骤的重要性。这样虽然浪费了一点时间,但是学生还是会做的,同时学生也得到了怎样去做题以及真正的理解数学题,并从中发现数学美,时间长了能培养学生良好的数学兴趣、数学能力和创新能力。对所讲授的课程要有深入的了解,知识的内在联系及在学生专业上的应用要有所了解,可以给学生提一提,以便引起学生足够的重视。

2.4创新教师教学方法。

2.5建立良好的师生关系。

在教育教学活动中,良好的师生关系是保证教育效果和质量的前提。新时代的大学生具有自我意识强,个性张扬等特点,要提高课堂教育效果,必须建立良好的师生关系。只有师生间相互了解、相互尊重、相互赏识,把教学过程看做是教师与学生的交流、交往过程,才能建立轻松、和谐的课堂氛围,从而才能提高课堂教育效果和教学质量。教师在教学的过程中,要学会换位思考,站在学生的角度估计讲授问题的难易程度。对学生容易出错或者经常犯错误的地方,上课要强调知识的重要性,举例说明让学生理解知识点及了解出错的原因。

2.6重视作业中存在的问题。

作业是学生学习知识好坏的一面镜子,虽然现在学生有抄袭作业的现象,但是大部分学生还是自己做作业。从作业中可以看出学生对知识掌握的程度,没掌握好的话,想办法用最简单的题目来说明问题。也许作业有可能做的非常好,这就要求教师对知识有很好的理解,对学生容易出错的地方,上课时可以提问学生做过的题目或者让学生课前上黑板重新做。这样一学期下来,学生对难点重点会掌握的很好,考试成绩自然会很好,同时对高等数学理解的程度也会很高。学生取得了好的成绩,对高等数学了解的多了,自然对高等数学学习兴趣提高了。在以后的学习过程中,自然会对各种数学课更加努力的去学习,从而对其本专业课也起到了很好的促进作用。最终学生会发现大学生活是非常快乐的,学到了很多知识,学校也培养出了合格的大学生。

【参考文献】。

高等数学教学心得篇五

高等数学是民办高等院校课程设置中的重要内容,高等数学可以很好的培养学生的基本能力,使学生形成良好的数学思维,由于这个原因,我们十分有必要想办法提高民办高校高等数学的教学效果。本文简要的分析了我国现阶段大部分民办高等院校的的高等数学教学的现状,对民办高校高等数学的教学提出了一些合理化的建议。

民办高校的大部分学生的数学基础相对比较薄弱,民办高校的学生也没有很强的学习积极性,因此高等数学的教育工作者很难把握学生具体应该学习什么内容,学习什么样的程度,这就给老师进行因材施教带来了难度,民办高校的高等数学教师一般来说都是数学专业毕业的,对学生的专业课不太了解,这就导致了民办高校的老师在讲授高数课的时候不知道应该怎样凸显高数在学生专业课中的重要作用,从而使得学生学到的高等数学知识不能很好的运用到相应的专业课当中去。还有一点就是目前的民办高校教师在授课过程中,大部分采用传统的授课方式,大部分还是“填鸭式”的教学方式,这种教学方式非常不利于学生的学习,特别是不利于数学基础不好的同学进行数学的学习,这样一来就加剧了学生们对于高等数学课程的恐惧感,部分学生甚至会产生厌学情绪。

二、针对民办高校高数分层教学的实践。

民办高校的学生具有基础起点比较低、层次比较多、学生之间的差距比较大等特点,我们可以尝试采用下面的分层教学方案进行高等数学的教学工作:

在新生入学的时候,我们可以对学院里面的所有学生进行一次问卷调查,初步掌握学生的数学基础,或者参考新生入学时候的高考成绩,这样做可以为以后的分层教学做好准备。一个学院的学生,我们要保证他们所修课程的学分一致,在问卷调查和入学成绩的基础上根据学生的不同的学习能力以及态度,将学生按照一定的的比例分为a、b、c三个层次,然后在根据分层的情况进行高等数学的分层教学。

1.a层次的学生数学基础比较差,缺乏良好的数学思,理解数学知识的能力也不够强,a层次的学生对于学过的知识往往不能很好的掌握,所以他们的成绩一般来说不会太理想,因此,a层次的学生对于高数课的标准就仅仅限于及格就可以了,民办高校高等数学的任课教师在进行高等数学的教学过程中应该把课本中的基础知识作为重点内容,让学生们能够很好的完成基础题,加强学生对于高等数学基础知识的理解和记忆,让班级里的大部分学生能够通过模仿例题解答高等数学课程当中最基本的问题。

2.b层次的学生数学思想和基础以及学习态度都比较好,能够很好的掌握高等数学的基本知识,也具备良好的学习方法,但是这个层次的学生往往缺乏独立思考的能力和深入探究的兴趣!因此,对于b类学生来说,高等数学的授课教师在进行高等数学教学工作的时候,应该多多注意教学方法的创新,让课堂变得更加的丰富多彩。

3.c层次的学生数学思想和基础以及态度都非常好,有良好的学习习惯和强烈的学习积极性,这个层次的学生大部分都希望自己能够考上研究生到更好的院校进行学习,因此这类学生对于知识的需求量非常大。对于这个层次的学生,民办高校的高等数学授课老师在教学过程中应该更多的采用启发式教学,除此之外还应该更多的联系考研内容。

在学完一定的章节之后,我们要让学生进行一定的练习来巩固课堂教学效果,民办高校的高等数学教育工作者在布置作业的时候,就要考虑不同层次学生的接受能力,分层次布置作业,比如:给a层次的学生更多的布置基础题,这样能够很好的避免学生抄袭作业的现象,提高学生的学习积极性;b层次学生在做练习的时候应该把基础题作为主要的练习内容,在此基础上稍微的加入一点点提高的练习内容,这样可以很好的提高教学效果,c层次则应该把提高的题目作为主要的练习内容,积极地在作业中融入考研题型,为这个层次的学生将来的考研打下良好的基础,提高学生的数学能力。

三、结语。

在高等数学的教学工作中积极的实施分层次教学方式对民办高校来说还是比较新颖的的教学模式,机遇与挑战并存,与此同时我们应该意识到,在高等数学教学工作中实施分层次教学也对高等数学的授课老师提出了全新的、更高的要求,实施分层次教学的时候需要高等数学的授课教师不仅仅要具备良好的数学素养,而且要了解学生专业课的有关内容,从而有针对性的制定出不同专业所需的不同的高数教学计划,并在教学过程积极实践,这样可以使高等数学的教学工作升上一个新的台阶。

高等数学教学心得篇六

作为高校,结合我校文科生的现状,现在文科高等数学教学上存在以下一些问题:

1.1文科生个体差异性较大、数学基础比较薄弱。高等数学具有运算复杂、内容抽象、应用广泛等特点,因而大部分文科生在潜意识中对数学存在畏难心理,加之近年高校的不断扩招,生源质量得不到保证,学生整体素质下降已成为一个不容忽视的现实。还有相当一部分文科生之所以选择文科专业是因数学成绩不理想,他们普遍认为数学单调乏味、难于理解,无形中就更增加了文科生学习高等数学的难度。

1.2文科生在学习高等数学过程中缺乏学习兴趣、学习动机不明确。数学学习动机直接推动学生进行数学学习,它是学生个人的心理需求、企图达到目标的一种内在动力。现实中,数学科学与人文科学的联系越来越密切,数学里面处处显现哲学等人文科学。教师要向学生讲明两者的辩证关系,在教学中不断激发学生的学习动机和兴趣,逐步培养良好的学习习惯与方法。

1.3教学方法简单、形式单一。文科高等数学是近些年才开设的基础学科,教师大多是从理工科教师中挑选的。这些教师虽然具有丰富的经验,但对文科生的专业不很了解,对文科高等数学的教法还不熟悉,教学难以突出重点,且与学生专业内容联系少,引不起学生的学习兴趣。在教学实践中,不能遵循“学生为主体、教师为主导”的教育理念,对深奥的定理、抽象的概念讲得过多,以致学生学习兴趣降低、教学效果较差。

1.4课程设置和教材内容还需进一步完善。教材的质量直接影响到教育质量的高低。当前,文科高等数学课程没有通用的教学大纲,虽然目前教材的数量很多,但适宜文科生特点的教材很少。大部分是以理科高等数学为模本,通过简单改编而成。教材中的内容多而杂,语言生硬抽象、难以理解,与许多文科专业联系少、缺乏实用性。许多教师在教学过程中只专注讲解教材内容,而缺少背景介绍和联系实际应用。

2.1文科生的特点和需求。

从对沧州师范学院级文科类开设高等数学课程的市场营销、旅游管理、金融保险等专业调查问卷的统计数据看,文科生中比较喜欢数学的占42%,文科专业学生中认为目前所学的高等数学内容比较难的占57%,学习高等数学比较吃力的占71%。从调查中我们发现“降低难度”“提高趣味”的比例较大,因此我们必须在这些方面下功夫、做文章。文科生的专业特点决定了高等数学在知识层面上不宜对学生有过高的要求,更不能成为他们学习的负担。文科高等数学的教学要放弃单纯的理论灌输,教材内容必须考虑思维方式的培养、数学知识的结构优化,还要涉及文科生的专业特点,可以将一些应用较广的内容补充进来。例如:要开设微积分、线性代数、微分方程等课程。微积分是高等数学教学的基本内容,也是许多课程的基础,应用广泛而深刻,这点必须向学生重点介绍。对于一些必要的计算,线性代数的应用比较广泛,特别是对金融经济学专业学生来说更为重要。还可以利用数学建模做些探索性的尝试,形成边学边用的学习环境。

2.2教学目的。

根据当今社会对高素质人才的渴求及文科生未来要从事的工作,结合高等数学学科的历史特点、发展趋势和作用来看,设置文科高等数学的目的大致有两个方面:一是培养与增强文科生的理性思维、能力,提升文科生的整体素质;二是理解与掌握高等数学的基本思想、方法和内容。在这两方面中对文科生来讲应以前者为重,后者是前者的基础,前者只有通过后者才能实现。一个人若具备良好的数学素质,可以更好地利用科学的方法和思维分析解决实际问题,提高创新意识、能力。随着计算机的出现和it产业的飞速发展,各门学科的融合、量化趋势更促进了数学与其他学科的结合,这就要求文科生也应具备一定的数学素养。

2.3将数学文化融入教学,激发学生兴趣。

俗话说:兴趣是最好的老师。兴趣能激活人的思维潜能,让人主动去学习,并使人更多地接触该领域的内容。依据文科专业的特性和学生自身特点,将数学文化融入到文科数学教学,不仅丰富教学内容更能激发学生的学习兴趣。数学文化主要是指数学的思想、精神和方法。文科生不擅长抽象、逻辑思维,而发散、形象思维较好,分析综合问题的能力和论证问题的能力较差,但对事物较敏感且具有文学知识的优势等特点。在教学中尽可能将数学史融入其中,有很多以数学家的名字命名的定理,比如柯西定理、费马引理等,在讲这些内容时,都可以把背景知识介绍给学生,并尽可能将数学语言文学化、艺术化,使学生在学习数学分析、论证方法和理性思维的同时,感受到高数的魅力,不仅能掌握数学的精神、思想和方法,提高思维逻辑能力,同时也可以开阔眼界,激发他们的学习兴趣。

2.4采取多种形式和手段丰富教学内容,调动学生积极性。

数学家哈根莫斯说过:“最好的学习方法是激励学生自己去动手、去思考,而不是讲清事实。”因此,在课堂教学中应采取精讲与勤练相结合的教学方法,让学生多分析和思考、多提问题,并通过调查问卷等形式及时反馈学生的意见,不断完善教学手段,以充分调动学生的积极性。可以借助多媒体技术使课堂教学变得更加生动和直观,内容上也更具感染力和表现力。例如:在讲授二重积分时,可先从讨论计算曲边梯形的面积之间的关系引出二重积分与曲顶柱体体积的关系,再利用多媒体使曲顶柱体划分为小曲顶柱体的过程更直观化,激发学生的学习兴趣。另外,多关心学生的学习和生活,多采用鼓励的方法促进教学,也会收到意想不到的效果。

2.5摒弃单一评价方式,建立多元化评价体系。

当前,高等数学的考试方式一般是以闭卷考试为主,兼顾考查上课出勤及平时作业情况。这种评价方式存在的一大弊病就是以试卷成绩决定学生的学习情况。这样就会导致学生只知考前突击、死记硬背,而不注重日常学习和积累。这种评价方式与我们的教育目的相悖,既不能反映学生t的真实水平,也不利于提高学生的数学素养,更难以调动学生的学习热情。为了培养学生创新意识和提高数学应用能力,我们必须摒弃单一评价方式,对其进行合理优化,将考核方法改为闭卷和开卷相结合的方式,例如:用提交论文的形式把考查目标融入相应的实际问题,教师只负责指导,而让学生利用各种方式亲自动手搜集资料、寻找适当的解决方法,以此来考查学生对高等数学知识的认知程度和数学在各知识领域中的应用能力。

作者:杨丽贾庆兰工作单位:沧州师范学院数学系。

高等数学教学心得篇七

高等数学是普通高校理科专业学生重要的基础课程之一。课程的目的是培养学生准确、简练的表达能力,能用标准的数学语言清晰地陈述自己的思想,是帮助学生了解高等数学处理问题的基本思想,并能运用这些思想方法处理数学、经济学和其它学科遇到的问题。高等数学还具有内容多,跨度大,概念抽象,系统性与逻辑性要求高,思想方法重要,应用广泛等特点。因此,探索出一套面向学生教授高等数学的教学方法,使得他们较快适应高等数学的学习方式,较快进入角色,从而真正提高教与学的质量,具有重要的意义。下面来谈一谈本人通过五年多高等数学的教学实践所获得的几点心得体会。

一、激发学生学习高等数学思想方法的兴趣。

关于激发学生探究高等数学思想方法的兴趣,我们必下夫,要不然学生面对概念多,抽象性强,学习难度大的高等数学,不容易把握其知识结构和各部分内容之间的联系,做题没有思路。怎样才能将快乐还给高数课堂?在每一项教学能容中,都隐含着大量的数学思想和教学方法,要充分开掘,使学生通过理解和掌握数学思想方法,认识数学本质,同时增强学高数和用高数的兴趣意识。同时,我们的授课要引人入胜,时刻注意提高课堂教学效果。

二、注意课后复习以及基本知识的积累。

学习和应用新知识固然很重要,但知识的巩固和消化也十分必要。特别是对高等数学这种前后知识关联性比较强的学科,学习新知识通常都是建立在已获取知识的基础之上的。因此,认真而及时地复习对于后面知识的学习影响至深。高等数学有它自己的一套语言及思维方式,理解掌握并熟练运用这套语言及思想对于学好高等数学非常重要。本人在教学中发现,在高等数学开始的学习阶段,大多数感到学习困难的同学总是对那样的'一套语言及思维方式不适应,很大的一部分原因就在于对概念,定理的理解,记忆不够准确熟练。虽然说学习数学不能死记硬背,但不熟悉数学的基本概念,公式,定理,法则及有关性质,就谈不上数学思维,更不要说解决问题。只有经过巩固和复习,才能加深理解和记忆,从而真正掌握它,将其转化为自己的东西,得以灵活运用。知识在于积累,学习高等数学也是一样。初期的基本知识的积累对于学生进行下一步的学习,对于学生分析问题,解决问题的能力的培养都具有重要的意义。记住一些较为简单的结论,如课后习题中的某些结果及解题方法,如课本中一些实用的而非定理形式体现的结果等等,对于进一步理解,分析,解决较难的问题都具有化难为易的作用。因此在实际教学过程中,对于有些经常用到的解题方法及习题结论,应作为重点要求学生加以记忆积累,只有经过不断的复习,巩固,积累,运用,才能使得学生对高等数学的学习感到轻松自如,才能使得学生对分析问题,解决问题感到驾轻就熟,从而消除或减轻学生在学习高等数学中的畏难情绪。

三、注重学生的主体优势。

课堂教学是在教师的精心组织和指导下学生积极参与配合的过程,以学生为中心是这个过程的出发点。因此,组织课堂教学要充分发挥学生的主体地位,如何才能发挥学生的主体优势呢?最重要的一条就是教师在课堂组织教学要立足实际,以人为本,力争最大限度地为学生创造显示才能,发挥才智的环境,鼓励学生质疑,鼓励学生大胆想象,提出问题,思考问题,加强师生互动环节,使学生始终保持学习数学过程中的主动状态,主动观察,主动思维,主动回答,使教学过程本身成为学生发展和提高的过程。同时,对一些问题的多种解答给以全班展示,讨论,评价,在一定程度上也为学生学习提供了一定的方法指导。

计算机在高等数学教学中起着非常重要的作用。网上教学是高等数学计算机辅助教学的一种重要形式,提供网上高等数学课程资源,可以帮助学生不受时间,地点的限制进行学习和查阅,并可以了解课程的重点难点及习题的解答。

教学课件是指一些直接用于教学的计算机软件,与数学工具性软件不同,工具性数学软件通常是不能直接用于教学的,它必须在编程或在开发才能成为数学课件。可根据学习目的,地点的不同,或在课堂上演示数学课件,或在课外使用课件。我比较重视实课件的应用,它能够很好的提高教学效果。

高等数学的学习要做一定量的练习,这是数学学习的特点之一。精选适量的练习题,按一定的结构,利用计算机的储存,查询能力,快速反应能力和互动能力构成题库,学生可以根据自己的基础和时间去进行练习。题库系统的建立,可以实现资源共享,并可以节省大量的重复劳动,减轻教师的负担,将精力投放于教学的其他方面。

参考文献:。

[1]同济大学应用数学系.高等数学.高等教育出版社,.3。

[2]彭秋发,戴立辉,颜七笙.试谈计算机在数学教学中的应用.工科数学,.2。

[3]陈光潮.经济数学基础.中国财政经济出版社.

高等数学教学心得篇八

我国是有着两千多年文明历史的国家,在不同的历史时期,教学形式各有不同。新中国成立以来,高等数学教育教学模式经历了多次改革的浪潮。新中国成立初期,受前苏联教育家凯洛夫教育理论的影响,数学课堂教学广泛采用的是“组织教学、复习旧课、讲授新课、小结、布置作业”五环节的传统教学模式,很多教学模式都是在它的基础上建立起来的。上世纪80年代,开始了新一轮高等数学教学方法的改革,这一时期教学模式的改革主要以重视基本知识的学习和基本能力的培养为主流,并带动了其他有关教学模式的研究与改革。近年来,随着现代技术的进步和高等数学教学改革的不断深入,对高等数学教学模式研究和改革呈现出生机勃勃的景象。从问题的解决到开放性教学;从创新教育到研究性学习;从高等数学思想和方法的教学到审美教学等,高等数学教学思想、方法和教学模式呈现出多元化的发展态势。现在比较提倡的教学模式有:数学归纳探究式教学模式;“自学—辅导”教学模式;“引导—发现”教学模式;“情境—问题”教学模式;“活动—参与”教学模式;“探究式教学模式”等。研究这些教学模式,能够学习和借鉴它们的研究思想和方法,为本文基于数学文化观的高等数学教学模式的建构提供方法论支持。

(1)“自学—辅导”教学模式,是指学生在教师指导下自主学习的教学模式。这一模式的特点不仅体现在自学上,而且体现在辅导上,学生自学不是要取消教师的主导作用,而是需要教师根据学生的文化基础和学习能力,有针对性的启发、指导每个学生完成学习任务。“自学—辅导”教学模式能够使不同认知水平的学生得到不同的发展,充分发挥学生各自的潜能。[3]当然,这一教学模式也有其局限性,首先,学生应当具备一定的自学能力,并有良好的自学习惯;其次,受教学内容的限制;此外,还要求教师有较强的加工、处理教材的能力。

(2)“引导—发现”教学模式,主要是依靠学生自己去发现问题、解决问题,而不是依靠教师讲解的教学模式。这一教学模式下的教学特点是,学习成为学生在教学过程中的主动构建活动而不是被动接受;教师是学生在学习过程中的促进者而不是知识的授予者。这一教学模式要求学生具有良好的认知结构;要求教师要全面掌握学生的思维和认知水平;要求教材必须是结构性的,符合探究、发现的思维活动方式。[3]运用这一教学模式就能使学生主动参与到高等数学的教学活动中,使教师的主导作用和学生的积极性与主动性都得到充分的发挥。

(3)“情境—问题”教学模式,该模式经过多年的研究,形成了设置数学情境;提出数学问题;解决数学问题;注重数学应用的较稳定的四个环节的教学模式,模式的四个环节中,设置数学情境是前提;提出数学问题是重点;解决数学问题是核心;应用数学知识是目的。[4]运用这一模式进行数学教学,要求教师要采取启发式为核心的灵活多样的教学方法;学生应采取以探究式为中心的自主合作的学习方法,其宗旨是培养学生创新意识与实践能力。

回顾我国高等数学传统教学模式可以发现,其主要的教学目标是知识与技能的培养,重视高等数学知识的传授多,与实际联系的少;关注学生数学知识点的学习,忽视数学素质的培养;强调了老师的主导作用,学生参与的少,使学生完全处于被动状态,不利于激发学生的学习兴趣。这不符合数学教育的本质,更不利于培养学生的创新意识和文化品质。

2.人文关怀失落。

我们不能否认,传统的高等数学教学模式有利于学生基础知识的传授和基本技能的培养,在这种课堂教学环境下,由于太过重视高等数学知识的传授,师生的情感交流就很缺乏,不仅学生的情感长期得不到关照,而且学生发展起来的知识常是惰性的,因而体会不到知识对经验的支撑。这就可能滋生对高等数学学习的厌恶情绪,导致学生对数学科学日益疏离,也造就了一些学生缺乏人文素养、创新素质的理性人格。[5]在这种数学课堂教学中,教师始终占据主导地位,尽管也在强调教学的启发性以及学生的参与,但由于注重外在教学目标以及教学过程的预设性,很少给教学目的的生成性留有空间。课堂始终按照教师的思路在进行,这种控制性数学教学是去学生在场化的教学行为,在这样课堂上,人与人之间完整的人格相遇永远退居知识的传递与接受之后。这无疑在一定程度上造成数学课堂教学中人文关怀的失落。

3.文化教育缺失。

高等数学文化知识不仅使学生了解数学的发展和应用,而且是学生理解数学的一个有效途径,从而提升学生的数学素质。数学素质是指学生学习了高等数学后所掌握的数学思想方法,形成的逻辑推理的思维习惯,养成的认真严谨的学习态度及运用数学来解决实际问题的能力等。[6]传统的高等数学教育过于注重传授知识的系统性和抽象性,强调单纯的方法和能力训练,忽略了数学的文化价值教育,对于数学发现过程以及背后蕴藏的文化内涵揭示不够;忽视了给数学教学创造合理的有丰富文化内涵的情境,缺少对学生数学文化修养的培养,致使学生数学文化素质薄弱。

数学是推动人类进步最重要的学科之一,是人类智慧的集中表达。学习数学的基本知识、基本技能、基本思想自然是数学教育目的的必要组成部分。数学的发展不同程度地植根于实际的需要,且广泛应用于其他很多领域,所以,数学的应用价值也是教育目的的一个重要部分。数学教育的目的,还有锻炼和提高学生的抽象思维能力和逻辑思维能力,使学生思维清晰、表达有条理。实现科学价值是数学教育一直不变的目标,但并不是唯一目标。数学的人文价值也是数学教育不可忽视的重要内容。在数学教育中,我们不仅要关心学生智力的发展,鼓励学生学会运用科学方法解决问题,而且也要关注培养有情感、有思想的人。同时,作为文化的数学,能够提升人的精神。[7]通过学习数学文化,能够培养学生正确的世界观和价值观,发展求知、求实、勇于探索的情感和态度。因此,笔者认为基于数学文化观的高等数学教育,就是要将其科学价值与人文价值进行整合。在数学文化教育的理论指导下,“基于数学文化观的高等数学教学模式”的教学目标为:以学生为基点,以数学知识为基础,以育人为宗旨,在传授知识,培育和发展智力能力的基础上,使学生体验数学作为文化的本质,树立数学作为一种既普遍又独特的与人类其他文化形式同等价值地位的文化形象,最终使学生达到对数学学习的文化陶醉与心灵提升,最终实现数学素质的养成。

分析上述高等数学教学模式发现,虽然现代教学模式已经打破了传统教学模式框架,但学生的情感态度、数学素质的培养不是其主要教学目标。学习和研究现代教学模式的研究思想和方法,使笔者认识到构建数学文化观下的高等数学教学模式,并不意味着对传统的教学模式的彻底否定,而是对传统的教学模式改造和发展。这是因为数学知识是数学文化的载体,数学知识和数学文化两者的教育没有也不应该有明确的分界线,因此数学知识的学习和探究是数学教学活动的重要环节。立足于对数学文化内涵的理解,围绕基于数学文化观的高等数学教学目的,通过对高等数学教学模式的的反思和借鉴,本人逐步从多年的教学实践中归纳形成了“经验触动———师生交流———知识探究———多领域渗透———总结反思”的教学模式。[8]这一教学模式就是在教与学的活动过程中充分渗透数学文化教学,教师活动突出表现为呈现———渗透———引导———评述;学生活动突出表现为体验———感悟———交流———探索。

(三)对本模式的说明。

(1)经验触动。学生的经验不仅是指日常的生活经验,还包括数学经验。数学经验是学习数学知识的经历、体验。要触动学生的日常生活经验和数学经验,教学中就要注重运用植根于文化境脉的数学内容设置教学情境,使学生从数学情境中获取知识、感受文化,促进数学理解,激发学生的学习兴趣和探究欲望。

(2)师生交流是指师生共同对数学文化进行探讨。数学文化教育的广泛性、自主探索与合作交流学习方式都要求师生之间保持良好的沟通。严格来说,“师生交流”不仅指教师和学生的交流,也包括学生和学生的交流。师生交流是模式实施的重点,当然,师生交流不会停留在这个环节,它会充斥于之后的整个课堂教学中。

(3)知识探究是数学文化教学的必要环节。数学知识是数学文化的载体,两者是相互促进、相互影响的。在感受数学文化的同时,对相关数学知识进行提炼、学习,就是从另一个角度学习和体悟数学文化,是对数学文化教育的一种促进。

(4)多领域渗透是指教师跨越当前的数学知识和内容,不仅建立和其他数学知识的内部联系,而且能够拓展教学内容,将之渗透到其他学科的各个领域,使学生感受数学与数学系统之外领域的紧密联系,从而使学生深刻地感悟到数学作为人类文化的本质。

(5)总结反思就是对整堂课做回顾总结,加深学生对所学数学知识的理解,加深对所体会的数学文化的印象,也为下次的数学学习积累经验,开创创新源泉。本教学模式是一种主要基于数学文化教育理论,以数学意识、数学思想、数学精神、数学品质为教学目标的教学模式。数学文化氛围浓厚的课堂、数学素养丰富的教师、学生学习方式的转变都是模式实施的必要条件。

在进行高等数学的教学设计和教学过程中,具有教学模式意识是对现代教师应有的基本要求,而对教学模式的选择,不是满足个人喜好的随意行为,而是根据教学对象和教学内容合理选择的结果。而根据教学对象和教学内容选择适当的教学模式,也不是生搬硬套,将某种教学模式简单地移植到教学中,将教学模式“模式化”,使教学模式变成僵死的条条框框,对教学模式的改造、创新和超越,才是创新教育的本质。[9]高等数学的课堂教学是一个开放的教学系统,课堂活动中学生的任何微小变化或不确定的偶然事件的发生,都可能导致课堂教学系统的巨大变化,这就需要教师实时、恰当的对教学方案做出调整。教学过程中的这种不确定性表明,教师需要运用教学模式组织教学,但更要超越教学模式。在教学过程中能灵活运用教学模式、并超越教学模式便是成熟、优秀的数学教师的重要标志。因此,成功的选择、组合、灵活运用教学模式,不受固定教学模式的制约,超越教学模式,走向自由教学,最终实现“无模式化”教学,就是优秀的高等数学教师追求的最高境界。

作者:刘慧工作单位:北方民族大学信息与计算科学学院。

您可能关注的文档