商的近似数的课后反思(优质11篇)
文件格式:DOCX
时间:2023-11-19 03:32:44    小编:ZTFB
商近似数课后反思 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

商的近似数的课后反思(优质11篇)

  • 上传日期:2023-11-19 03:32:44 |
  • ZTFB |
  • 11页

总结是了解自己在某个领域的成长和进步的重要方式。如何提高自己的沟通能力成为人们关注的热门话题。小编为大家整理了一些精选的总结范文,希望可以激发大家写作的灵感。

商的近似数的课后反思篇一

您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思《近似数》是义务教育课程标准实验教科书数学二年级下册第77页的内容,学生在学校本内容之前,已经学校过简单数的估数,以及100以内加减法的估算,学生基本能理解大约、左右、大概等词的意思,并且已经学习了万以内数的读写法,数的组成。这些知识构成了本节课的学习基础。

课堂设计的板书如下:

近似数。

准确数:近似数:

102元100元。

313人310人。

41人40人。

9992人10000人。

近似数接近准确数,近似数一般是整十、

整百、整千、整万的数,所以较容易记忆。

在练习过程中,我发现学生存在几个问题:

1、学生没有真真切切地体会到近似数的特点与作用。比如说对于603米,有的学生的答案是约为601、602米。

您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思2、学生没有很好地理解近似数可以有多个。

3、学生没有能正确地进行估数,比如练习洗衣机售价为1198元,约是多少元?这题,很多学生就回答约是20xx元。

为什么会出现如此多的问题呢?回顾我的教学过程,我发现对于近似数的特点,教授得并不透彻,而且好像没有正式地提到近似数可以有多个。所以如果上课时,我有意识地注意到这些细节,也许就可以避免出现第一和第二个问题。

第三和第四个问题出现的原因,我觉得可能是一样的,那就是学生还没有体验到较大的数在生活中的应用、无法准确地把握大数之间差距的程度究竟有多大,如:学生可能知道9019与9000相差19,却无法体会到19对于这两个数而言,这个差距是很小的。

如果重新教授本课,我该如何处理,才能很好地解决这些问题呢?也许通过学生交流、讨论,教师小结,可以很好地解决第一和第二个问题;而第三个问题,可以通过一百一百地从1200数到20xx,发现之间的差距有800之多,并顺势提醒,近似数跟准确数是接近的。但第四个问题,目前,我真想不出很好的办法来解决。

路漫漫其修远兮,吾将上下而求索。

商的近似数的课后反思篇二

在教学第七册数学课本“近似数”一课中,有一道带星号的题是这样的“9□8765000≈10亿,方框里可以填哪些数时,这个数的近似数于10亿?”教学这一练习题时,我先让学生独立练习,要求学生也可以进行进行合作讨论,然后交流。结果,学生经过交流后,展示了两种结果:一种是方框里可以填大于或等于5的数;另一种是方框里可以填5、6、7、8、9。我立即追问学生:“这两种填法一样吗?”话音刚落,学生顿时激烈争论起来。有的学生说一样,而有的学生坚决认为不一样,并且列举出比5大的数还有10、11、12……,我顺着学生的思路不断地往下板书,一直写到二十几,然后甩甩手臂,装出手很酸的样子,问:“写完了没有,我的手都写酸了。”学生马上说“写不完,写不完,比5大的数有许多个。”我马上接着说:“写也写不完的数在数学上有无数个”。这时我又问学生:“这两种填法一样吗?”学生坚决而果断地说:“不一样,填5、6、7、8、9是正确的”。

在完成第二道星号题9□8765000≈9亿时,就更有趣了。当我提出方框里可以填哪些数时,有的学生说:“填比5小的数,只能填4、3、2、1、0”。这时有位学生神气活现地说:“还有-1、-2、-3、2.1、3.7等比5小的数,所以方框里填比5小的数是不正确的”。这位同学的回答超过了当前我们所学的整数范围内的数。看着这些聪明而又可爱的学生,我不由自主地赞叹:“你们太棒了,真了不起,能找到哪么多比5小的数”。这时我问学生比5小的数究竟有多少个时,同学们顿时异口同声地说:“比5小的数也有无数个”。“方框里应该填哪些数,同学们现在知道吗?。学生自信地回答:”方框里应填比5小的自然数都是正确的“。

通过这堂练习课,使我深深地反思到:学生的思维不再是一张白纸,新课程注重培养学生学习的兴趣与愿望,把学习的主动权交给学生,让学生更多地参与教学活动,在主动积极的心境下获取知识和发展能力。对学生思维方法的教学法,不能仅靠简单的告知。数学教学最本质也是最显著的特点在于,它所传输的信息不仅仅是数学活动忍气吞声结果----数学知识,还应包括数学思维活动的过程,在教学中教师应该让学生经历一次次数学思维的活动过程。对学生来说,无论是构建一种新的数学知识,还是掌握新的数学思维方法,必须让学生经历数学思维的活动过程,才能让学生的思维有感性认识上升到理性认识。

商的近似数的课后反思篇三

《义务教程标准》指出:学生的数学学习应当是现实的、有意义的、富有挑战性的,学习内容要有利于学生主动进行观察、实验、猜测、验证、推理与交流等数学活动。可见,学生低层次的模仿是不易建立起解决问题的数学模型的,更难以品味出数学思考的韵味和乐趣。因此,本节课在对近似数的教学上,通过实例直接告诉学生什么近似数的含义,让学生知道近似数的和精确数的区别,通过练习找近似数、找生活中运用近似数的例子,进一步加深对近似数的理解。

在学习用四舍五入法求近似数时,没有直接告诉学生什么是四舍五入法,怎样采用四舍五入法,而是给出学习的素材,让学生有足够的空间自己质疑,引发学生的探究心理,在足够的'空间和时间范围内,小组学习合作,通过观察,交流讨论、比较探究得出四舍五入的方法,建立了解决此类问题的数学模型。

学生学得积极主动,兴趣盎然,教师以组织者、引导者的身份参与其中,师生共同分享学习的成功和喜悦。

商的近似数的课后反思篇四

一些比较大的数据,由于书写不方便,需要将它们改写成以万作单位的数,这样既方便书写,又便于读数。亿以内数的改写和省略是本节课的教学重点,难点是亿以内数的省略。通过本节课的学习使学生掌握大数的改写方法和利用“四舍五入”法省略万后面的尾数求近似数的方法。通过预习让学生明白三点,一是亿以内数的改写和求近似数是什么意思,二是哪样的数适合改写,哪样的数适合用四舍五入,三是四舍五入是什么意思,这样可以使好学生在学习时更有自信,不好的.学生先预习,如果不懂,经过第二天老师的点拨会豁然开朗。课中,通过老师举的例子,在小组同学交流的基础上,很快明白了改写的意义。

不足之处及改进:

在教学的过程中可能会有极少数学生对改写与省略尾数的联系与区别不太了解。所以下次教学中,我会强调并让学生明白改写只改变数的计数单位而不影响数本身的大小,用等号;而省略尾数后改变了数的大小,求出的是原数的近似数,用约等号。

商的近似数的课后反思篇五

近似数,学生在二年级下册的时候就已经学过了,有了这一基础知识做铺垫,本节课的内容也将会很容易的被学生接受。这是我上课之前所认为的。

在上课的过程中,学生的反应也很积极,课堂气氛也很活跃,我当时就觉得我之前的认为是正确的。结果,作业收上来一看,我傻眼了,即使上课我把该将的都讲了,该强调的也都强调了,可是,还是有部分学生做的作业一塌糊涂。不是忘了四舍五入,就是保留的小数出错。针对这一问题,我想了想,还是我在上课的时候处理不当。学生反应积极,我就理所当然的认为他们都会,接着,讲课的`速度就有点快了。这恰恰就把那些似懂非懂的学生以及完全不懂得学生丢弃了。所以,在下一节课,我还是慢慢的把上节课重点和难点再讲解了一遍,这次,作业情况有很大的改善。

所以,我想以后再简单的内容,我也不会粗心大意,草草了事。

商的近似数的课后反思篇六

1.情境化导入,引发学生的兴趣。

教学新知时,利用豆豆身高的近似数来引入:豆豆的身高是0.984m,三位同学的回答不同,通过说法的不同引出争论。通过引导,让学生在合作交流、自主探究、小组交流中把思维充分暴露出来,加深学生对用四舍五入法求小数的近似数方法的理解。

2.给学生充分展示的机会。

学生理解了保留几位小数的含义:保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……尽量让学生自己说出这些语句,小结后让学生熟读。通过让学生试着把豆豆的身高保留两位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出求一个小数的近似数的方法。

3.通过质疑,引发思考。

在比较近似数1.0与近似数1谁更精确些时,通过提问,引发学生思考,从而使学生明白近似数末尾的0不能省略的道理,突破难点。这样的设计使学生在真正理解和掌握基本的数学知识与技能、数学思想和方法的同时,获得了广泛的数学活动经验,为学生的全面发展提供了更多的机会。

同学们出现较多的问题是不能准确写出符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练。

再次教学中,要立足于学生的主体发展,引导学生思考,纠正学生错误,通过巩固练习使学生加深对小数不同数位的对应位置的理解,提高做题的正确率。

商的近似数的课后反思篇七

“近似”的概念在小学数学知识里,有一个孕伏与发展的过程,在本课,第一次出现了近似数的概念,这个概念是在学习了万以内数的认识的基础上教学的,是相对于她们学过的准确数而言的。教材没有给出四舍五入的方法和约等号的使用,只要与准确数比较接近的整十整百整千数都可以。在实际教学中,我特别注意联系生活实际,加强德育渗透和人文素养培养,通过多种教学活动加强近似数与准确数的对比,从而加深学生对近似数的感知和理解,并能加以运用。现将本节课比较成功的做法和不足之处总结如下:

1.注重联系生活实际。

例如通过第xx届全运会的这个时事背景引出例10,让学生感知数学来源于生活,在之后的大量练习中,也十分注重取材于实际生活。通过本节课的学习,学生不仅掌握了相关的数学知识,还在情感态度和价值观以及人文素养方面有所渗透,顺利完成教学目标。

2.教学环节设计充分考虑二年级学生的心理特点。

二年级的学生注意力集中时间较短,在玩中学是二年级学生比较乐于接受的一种学习方式,因此,在本课的教学环节设计方面,我采取了动静结合的方式,不仅有独立思考,还有小组交流;不仅有静态的纸张作业,还有活跃气氛的多种游戏;不仅有自己读题审题,快速回答问题,还有听题回答问题……整个环节安排紧凑有序,科学合理,再加上琅琅上口的顺口溜,学生们的积极性和学习兴趣被很好的调动起来。

3.充分发挥课堂评价的功能。

本节课的课堂评价主要采取小组积分制,通过师生共评和生生互评,对各小组进行计分(100分,50分和2分),充分调动学生课堂活动参与的积极性,在课堂结束时,每组学生算出本组得分的准确数和近似数(近似成整十数),紧扣教学主题。

由于近似数的概念是二年级学生第一次接触,是在学习万以内数的认识的基础上进行认知的,而且只是感知、比较和理解,部分学生在使用数学语言判断一个数是否是近似数方面并不是特别熟练,个别同学的估数能力有待加强练习。

在今后的学习中,我会继续加强学生估数能力的培养,相信到三年级通过进一步学习估数的方法后,这一问题会得到更好的解决。

商的近似数的课后反思篇八

去年教学《近似数》,批阅作业时那个头痛至今都忘不了。一是当时对这节内容没有教学过,心中总是没有一定的“自信”;二是又感觉不会很难,不就是用个“四舍五入法”求一个数的近似数么?导致自己的备课与学生的实际情况有些脱离,所以交上来的作业,可想而知,学生出现的错误直接告诉自己没有上好这一节内容。自我认为很是简单,教材也是安排一个课时结束新知,可实际不然。所以今天在教学这个内容时,把事速度放慢了许多,也打算用2个课时来完成。与其快速没有效果的完成,还不如让学生掌握牢固多用一个课时来消化。

今年放慢了速度,所以在课堂上出现了一些问题,而这些问题也正是让我明白学生对于求一个数的近似数的真实情况,以免后面会忘记,所以特记下来,以备下次之需,同时也改进自己的教学。

问题一:学生明白“四舍五入法”,不明白的是怎么用这个方法。

在讲解完“四舍五入法”时,学生通过其他人的理解和老师的引导,能够接受‘满五要也向前一位进一,不满五就要舍’的道理。但是真正用的时候,他们还是不理解。例如教材中安排了“233184人约等于20万人,说说你是怎么得到的?”有些孩子一下子就明白了,“四舍五入到十万位,就看万位是不是比5大?”;可在今天的课堂中仍然有一些孩子提出自己的“质疑”:那8不是比5大吗?为什么不是“进一”,而是“舍掉”。从这些孩子的理解上出了问题。课堂上没有直接消除他们的疑问,而是由两个孩子说了自己的看法。a说,8在十位上,表示八十,对20万是根本不受影响的。b说,就算是五入,8向前进一位,那也只能说百位上变成,然后不能再继续向前进一位了。c说“233184”在数线上离20万更近,所以约等于20万;其实三个孩子的说法都有一定的理由,同时孩子能在较短的时间内进解述自己的看法,已经是非常了不起。于是在孩子们的想法上,我把“四舍五入”的方法进行了讲解,可还是有一部分人不明白什么“四舍五入到十万”。所以要让学生掌握到关键:四舍五入到哪一位,再看这一位的下一位。

问题二:15000约等于多少?

教材为了让学生理解近似数更接近于哪一个精确的数,安排了一个直观的“数线找位置”的方法,再观察与哪个更接近,再约等于哪个数。这个方法很好,非常直观。课堂当中有一位男生对18000接近于0,理解就非常好。这个孩子告诉大家,在数线上,先找到15000,如果比15000大一些就近2万,如果比15000小一些就近约等于1万。其实就可以说是直观的“四舍五入法”了。但是有人就提出疑问,那如果正好在中间,15000又是近似哪一个数。

今天这节课虽然没有按照教材的安排一个课时完成,但课堂中学生提出的疑惑让人很是开心。这些暴露在学生中的问题,既是今后在备课教学所需要注意的,也是能看出学生在课堂中有善于思考,学会提出问题。这应该也是课堂中的一个较大的收获。

商的近似数的课后反思篇九

近似数在日常生活中有着重要的作用,它与精确数不同,它仅表示某一对象的一定范围。本课的学习是让学生认识近似数,理解近似数在实际生活中的作用及意义,掌握求近似数的方法,即四舍五入法。能根据实际问题的需要求一个数的近似数,培养学生的估计意识,发展学生的数感。

教学中,就教材安排的两组情境,进行再创造,渗入一些准确数,然后让学生分类,并说出分类的理由,从而自然引出近似数,并引导学生讨论,为什么会形成这些近似数,在各种分类中明确近似数与精确数这两类数的特点,从而让学生体会近似数产生的过程,加深对近似数意义的理解,也让学生能在生活实际的背景下进行学习。在帮助学生建立了近似数的概念以后,结合生活实际,让学生找生活中的近似数,让学生体会到近似数在日常生活中的重要作用。教学如何求近似数是本课的一个难点,我通过独立的看一看,和同学说一说“你发现了什么”,自己试一试等活动,让学生做学习的主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律和方法,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。在合作交流的过程中,学生们把自己个性化的想法展示出来,使每个学生都得到不同程度的发展。

虽然在课堂上学生都参与到学习活动中了,但是在作业中,求近似数还是出现了不少问题,如何让学生能比较熟练的找到不同程度的近似数,有何有效的教学方法,是困绕我的问题。

商的近似数的课后反思篇十

教师明确小数的近似数的方法与整数的近似数相似。要用四舍五入法保留小数位数。要注意保留小数位数越多,精确程度越高这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的.味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

商的近似数的课后反思篇十一

本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413356286521490088,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。

4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。

1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。

2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。

1.加强保留整数、保留一位小数、保留两位小数的含义的逆向理解,使学生深刻体会保留几位小数的含义。

2.加强典型易错题的练习,消除学习中易出错、易混淆的问题。

您可能关注的文档