2023年渗透数学思想方法(优质13篇)
- 上传日期:2023-11-12 20:20:00 |
- ZTFB |
- 11页
记叙文是以叙述为主要手法,生动地描写人物、事件或景物的一种文学作品。如何高效备考,取得优异成绩?这里有一些总结写作的实用技巧和方法,希望对大家有所启发。
渗透数学思想方法篇一
数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。小学数学课程标准在总体目标中提出:“通过义务教育阶段的数学学习,使学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”数学思想方法是数学的灵魂,作为小学数学教师,我们应如何有意向小学生渗透教材所蕴含的数学思想,并且让小学生感受数学思想方法的奇妙呢?现结合人教版五年级数学教学谈谈笔者个人的一些经验和感悟,以供同仁们参考。
一、认真钻研教材,理解教学内容,感悟数学思想,注重教材的整体性。
钻研教材是小学数学教师形成数学教学能力的基础,小学数学教师只有通过钻研小学数学教材,掌握小学数学教材特点,明确小学数学教学的目标,了解了小学数学教学的规律和内容,娴熟地运用和掌握了行之有效的教学方法,才会形成成熟的小学数学思想和方法。各年级的数学教材中都蕴藏着丰富的数学思想方法,作为小学数学教师应该在精心钻研教材时,发现并挖掘教材中蕴含的数学思想方法,从中领会到数学思想方法的内涵及魅力。
小学数学教材是小学数学教师进行教学的主要依据,是教师备课的基础性资源。教师要教好课,必须研究教材、掌握教材。准确理解教学内容,首先要了解小学数学各册教材的内容及其编排意图,知道教材的前后联系,避免教学时的前后脱节或不必要的重复。其次,要深入分析研究自己当前所教的一册教材,着重弄清全册的基础知识和注意培养的基本技能,各章节的.教学目的要求,编排顺序,教学的重点和难点,以及每节教材中的例题、习题的配合情况。最后对准备教的一节或一段教材进行细致的分析与研究,包括掌握教学目标,明确所教教材的地位、重点、难点和关键,研究练习题。小学数学课堂教学的实践表明,一些低效的教学行为在很大程度上与教师对教材内容的理解和把握有关,由于教师对小学数学教材的钻研不够,不能准确地领会教材编写意图,理解教学内容的地位和作用,导致许多低效、甚至是无效的教学效果。事实上,准确理解教学内容,注重教材的整体性,更加有利于教师选择教学方法,设计教学方案,提高教学的目的性和有效性。
二、灵活处理教学内容,注重教材的结构性,将数学思想合理有效地渗透在教学中。
小学数学教材中蕴藏着丰富的数学思想方法,小学数学教师要做课堂的有心人,抓住契机,在不显山不露水的状态下有意向学生渗透数学思想方法,使学生能对数学思想有所感,有所悟,从而感受数学的魅力。
我国数学家华罗庚曾说:“数缺形时少知觉,形少数时难入微,数形结合百般好,隔离分家万事非。”数和形是数学研究的主要对象,而数离不开形,形离不开数。小学数学教师要善于引导学生借助一些简单、直观、形象的图形使一些复杂的问题简单化,抽象的问题形象化。如教学《真分数、假分数和带分数》时,教师可以给出一组表示分数的图形,让学生观察、比较每个图形所表示的分数,比较分数的分子和分母的大小。在学生给出得数后,教师可追问:“这些分数比1大还是比1小?为什么?”运用直观图形和分数结合,就可帮助学生轻松理解建构数学概念的含义。
转化与化归思想是小学数学学习中常用的思想方法。五年级数学教师都清楚《多边形的面积》这一单元是向学生渗透转化与化归思想的绝佳时机,而平行四边形面积、三角形面积和梯形面积中,又数平行四边形面积的转化最重要。只要学生理解并掌握了将平行四边形面积转化为已经会算的长方形面积的方法,后面再学三角形面积和梯形面积就可迎刃而解了。教师在教学时可先给学生创设一个故事情境:从前有个农夫有两个儿子和两块地,一块地为长方形,一块地为平行四边形,一天他把这两块地分给两个儿子。可是两个儿子看到地后都觉得父亲不公平,都认为对方的地比自己的大。你有什么办法帮帮农夫吗?学生听完故事后兴趣高涨,有的说长方形的面积大,有的说平行四边形的面积大,还有的说两个一样大。此时教师可发给学生两个完全一样的平行四边形,让学生思考并尝试能否把平行四边形转化成能算面积的图形。学生思考后很快就想到把平行四边形通过一剪一拼转变成一个长方形。这时教师再让学生拿出另一个平行四边形和剪拼后的长方形比一比,学生很快得出剪拼后两个图形的面积不变,而剪拼后的长方形的长就是原来平行四边形的底,剪拼后的长方形的宽就是原来平行四边形的高,由长方形面积计算公式可推导出平行四边形面积的计算公式。学生通过剪拼转化和教师小结性的板书,转化思想已深深烙在脑海中。再学三角形面积和梯形面积时,学生就会很自然地在已有的认知经验基础上利用转化的思想方法来学习新知。
笔者在教学小学数学《分数的基本性质》一课时:首先出示“1÷2=?2÷4=?4÷8=”,然后向学生提问:“你发现了什么?”有的学生根据商不变的规律发现得数都是0.5;有的学生根据分数与除法的关系得出商不变。此时教师让学生采用折纸、涂色的操作活动得出分数的基本性质,并再次让学生思考:“分数的基本性质能不能根据分数与除法的关系和商不变的性质来说明呢?”从而让学生发现分数的基本性质和商不变性质在内容上、在语言描述上有很大的相似性。
在小学数学课堂教学中,教师要站在学生的立场,引导学生独立思考,引导学生与人交流,在交流中呈现自己的想法,在倾听别人的陈述中进行比较和选择,从而在多种方法中挑选出最优的方案。如教学《找次品》一课时,我先出示9瓶矿泉水,并告诉学生这其中有8瓶是一样重的,有一瓶是比较轻的,让学生采用小组合作、动手探究的方式用天平找出次品。学生在合作探究后得出多种方案。此时,教师再引导学生从多种多样的方法中观察、对比、交流,让学生借助列表、画图等方式找出最优的方案,体会优化思想。
总之,小学数学教师要在小学数学教育教学中选择恰当的时机,选择恰当的方法向学生有意渗透恰当的数学思想方法,使学生感悟数学思想和方法,这样学生才会终身受益,在数学的海洋中自由畅游。
渗透数学思想方法篇二
在当前高中数学教学中,创设有效的教学情境,成为构建高效课堂的重要措施之一,因此在高中数学教学中,要想渗透德育教育,也要利用创设教学情境的方法来实现.比如,概率中随机事件、小概率事件教学过程中,可引入学生们都耳熟能详的守株待兔的故事,这样可以有效地激发学生的学习兴趣.通过调查显示,在此过程中,学生对宋国那位农民的“傻行为”更多的是讥笑.此时,可引导学生从概率的视角,对该故事进行重新审视,随后学生陷入了沉思状态.借此机会,可以向学生发问:“我们的现实生活中,若遇到类似的事情时,会像农民那样吗?”回答当然是否定的,再教育学生,要想取得好的成绩,是不能靠运气的,也许一次可以成功,但却不能每次都能成功,踏踏实实、一步一个脚印儿,才是正确的学习态度.实践中,人们更多地认为文科类课程教学过程中,渗透德育教育具有得天独厚的条件,而对于理科,尤其是高中数学教学过程中,要求思维缜密、严谨.但德育教育在高中数学教学中的作用不可忽视,实践中应当加强思想重视和方式方法创新,这是一个是值得深入研究的课题.(本文来自于《高中数理化》杂志。《高中数理化》杂志简介详见.)。
渗透数学思想方法篇三
所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。
小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的'“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想。
化归思想是把一个实际问题通过。
[1][2][3][4]。
渗透数学思想方法篇四
新课程标准与考试说明都没有明确指出对“二次函数的平移”的要求,这部分知识属于二次函数与平移两个知识点的交叉部分,属于平移变换在二次函数中的应用。
在教学过程中,老师没有“耽误时间”,在没有描点画图的情况下,直接给出二次函数平移的规律,即口诀“左上加,右下减,左右内,上下外”。具体说,针对二次函数,左加右减变括号内的,上加下减变括号外的。并且借2道中考题详细解释了二次函数的平移的口诀,最终学生可以独立完成其它几道老师布置的中考题,准确率达到100%。在后面研究函数的性质时学生不会通过函数的图象分析函数的增减性及最值问题。
生硬给出函数的平移的`口诀,的确可以缩短学生的思考路线,避免了学生走弯路。但是同时,学生探索的过程也被抹杀了,学生思考的空间也被挤掉了,有两个可以在这里渗透的重要的思想方法也被忽视了。所以学生不是越学越聪明,而是越学越呆板。我们完全可以借助函数的平移这个知识点为载体,渗透两个数学思想,即“数形结合思想”与“化归思想”。为此应修改如下:
(一)学生在课下用描点法在同一平面直角坐标系上画出图象。
课堂上师生首先共同订正,然后学生在教师的要求下通过比较,发现各函数之间的联系,做出正确的判断,最终发现图形平移的规律。教师通过多媒体演示图象空间位置的变化,印证学生的看法。同时可建立下面的知识结构图,让学生以填空的形式完成。
这样处理,三次体现了数形结合思想,学生在观察自己所作图象时会与具体的数、进行比较;教师运用多媒体演示时,学生在印证自己的猜想的过程中会第二次进行数形结合;在教师展示的空间结构图中,学生潜移默化的再次体会到数形结合。
几何图形直观,能够帮助我们正确理解概念和有关性质,它研究的对象是形。代数研究的对象是数.数形结合是研究数学的一个重要观点,是解题的一个有效途径,用数形结合解题,直观,便于发现问题,启发思路,有助于培养学生综合运用数学知识来解决具体问题的能力。这也是我们学习习近平面直角坐标系与在平面直角坐标系上描点绘制函数的原因。在此基础上,如果老师要求同学总结规律,老师再加工得到口诀顺理成章。此时教师如再做一个引申,“口诀可以推广,在初中范围内的一次函数(包括正比例函数)、二次函数(顶点式)、反比例函数的平移,以及在高中范围内的指数函数、对数函数、幂函数的平移也都可以由这个口诀解决。”学生也会在此处更上一层楼。值得一提的是,在后续学习过程中,针对二次函数的一般式要先转化为二次函数的顶点式在考虑平移。
(二)顶点法。
由于平移时,图象上的各点都向相同方向移动同样的距离,所以二次函数的平移可以考虑特殊点(特别是顶点)的平移变化。通过顶点的变化(具体看顶点横、纵坐标的变化)来判断一个函数的变化,即“一叶知秋”。
这样处理,体现了划归思想,即一般化特殊,特殊化思想方法的一般模式是:在许多数学问题中,由于抽象、概括程度较高,直接发现或改正这些性质往往感到困难,这时,可以先试探它的特殊、局部情况的特性,从中发现规律和解答的方法。如四边形内角和的求法(未整理归纳出内角和公式时)。教师在此对特殊化思想作一介绍也是合适的。而且教师可以根据学生情况作如下引申:顶点法可推广至分析函数的多种变换,如翻折与旋转。
在另一个班级的教学过程中,笔者按照这个思路教学,学生不但对本知识点处理得比较好,而且在后面学习函数的性质如增减性与最值问题时学生也能较好的掌握。
将本文的word文档下载到电脑,方便收藏和打印。
渗透数学思想方法篇五
小学生年纪比较小,他们还不能专注于学习保持探索状态,所以小学数学阶段的教学一定要在进行渗透数学思想方法的时候注意结合一些有趣的案例,并采用一些巧妙的方式让学生接受。
2.1在课程中发掘数学思想:
很多数学思想都是存在于一些不太瞩目的章节中,因此教师在备课的时候一定要仔细阅读教材,将教材中隐藏的知识点挖掘出来进行排列组合,组成一个完整的知识点体系。在进行授课的过程中,教师要注意在提问、例题的讲解、习题训练和归纳总结,一定要注意教学方式,进行数学思想方法的渗透。比如在讲解3双球鞋和12双凉鞋的金额是相同的,买2双球鞋和8双凉鞋的价钱是900元,那么球鞋和凉鞋分别多少钱一双?就可以利用已知条件去推导出来买四双球鞋需要900元,然后就能用8双凉鞋代替两双球鞋,这样就能利用转化的思想得到问题的答案。
2.2举一反三的学习方式:
学生通过在学习的过程中,利用曾经解决问题的方法解决了一个新的问题,这就是举一反三的能力,也被称为是“逆向思维”。学生在进行逆向思维的过程中,会对自己曾经学过的知识进行一个捋顺,并且从中得到新的认识,可能会对所学的知识有新的灵感和理解,并且在解题过程中有新的方法,让学习变得更加轻松,所以培养学生“举一反三”的能力十分重要。在给小学生进行“逆向思维”的时候,一定要考虑小学生的认知特点,因为小学生年纪比较小,所以首先要培养学生的踏实性,踏实的回忆才能帮助学生在回想的时候产生新的解题灵感并且平心静气对小学生未来的性格养成也是有着长远的意义的;正确引导学生掌握如何学习数学的方法,要有记忆解题步骤的能力,并且从步骤中去发现问题的内涵,独立思考在解决问题的过程中用了什么方法和思路,这样就能让学生在遇到问题后可以明确的想到运用何种解题思维和路径,并且还能的得到进一步的感悟[3]。
2.3进行知识的归纳和汇总:
小学阶段的数学课程时开发小学生形象思维的重要节点,因此如何让小学生在脑海中架构一个完整的数学体系十分重要。经常进行知识的归纳和汇总对于学生的记忆是十分重要的,很多学生在学习一大块数学知识后,老师都会组织学生进行巩固训练,让学生可以巩固知识并且在大脑中形成知识结构。数学思想方法有时候会比数学成绩更重要,一种数学思想方法可能会解答不同种类的问题,蕴含着不同的数学思想方法;一种数学思想方法也可以解决不同的数学问题,这就体现了数学这一学科内在蕴含的逻辑关系。
3结语。
总而言之,在小学数学中渗透数学思想方法是可以提高小学生数学能力的一个重要因素,教师一定要在熟读教材后一定要注意总结书中的数学知识,并且用一些有助于学生接受的教学方式,逐步渗透给学生归纳、类比等数学思想方法。小学阶段是学生培养形象思维和逻辑思维的重要节点,所以教师在小学教学中渗透数学思想方法十分重要。
参考文献。
渗透数学思想方法篇六
数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容.有人把数学思想方法称之为数学教学中的一颗明珠,因为知识的作用是有限的,而方法的作用往往能够涉及整个数学领域.正是因为其有着广泛的普遍适用性,有着超越知识层面,并且能够让人们在数学探究的征途上从未知到已知的可能性,因此在新课程改革中被赋予了相当的重要性.
事实上,新颁布的《义务教育数学课程标准》,再一次将基本思想写入其中.当然,令人注目的是我们初中数学还进一步提出了“基本数学活动经验”——其与数学思想方法也有着密切的关系.这样就将传统上的“双基”扩展为了“四基”,使得初中数学教学的内涵与外延都得到了进一步的丰富.
其一是数学方法.顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用.比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决.后者是指通过加减、代入等方法,使得方程中的未知数变少的方法.在复杂方程中运用这些方法可以化难为易.再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药.
其二是普遍适用性的科学方法.例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想.再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感.根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知.
其三就是我们常说的数学思想.我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学.众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家.因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明.
例如典型的建模思想,其是用数学的符号和语言,将遇到的问题表达成数学表达式,于是就建成了一个数学模型,再通过对模型的分析与计算得到相应的结果,并用结果来解释实际问题,并接受实际的检验.一旦学生熟悉了这种数学思想并能熟练运用,将是初中数学教学的一个重大成功.
渗透数学思想方法篇七
所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。
小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
数学知识本身是非常重要的`,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想。
化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不可逆转的单向性。
[1][2][3]。
渗透数学思想方法篇八
新课程标准与考试说明都没有明确指出对“二次函数的平移”的要求,这部分知识属于二次函数与平移两个知识点的交叉部分,属于平移变换在二次函数中的应用。
在教学过程()中,老师没有“耽误时间”,在没有描点画图的情况下,直接给出二次函数平移的规律,即口诀“左上加,右下减,左右内,上下外”。具体说,针对二次函数,左加右减变括号内的,上加下减变括号外的。并且借2道中考题详细解释了二次函数的平移的口诀,最终学生可以独立完成其它几道老师布置的中考题,准确率达到100%。在后面研究函数的性质时学生不会通过函数的图象分析函数的增减性及最值问题。
生硬给出函数的平移的口诀,的确可以缩短学生的思考路线,避免了学生走弯路。但是同时,学生探索的过程也被抹杀了,学生思考的空间也被挤掉了,有两个可以在这里渗透的'重要的思想方法也被忽视了。所以学生不是越学越聪明,而是越学越呆板。我们完全可以借助函数的平移这个知识点为载体,渗透两个数学思想,即“数形结合思想”与“化归思想”。为此应修改如下:
(一)学生在课下用描点法在同一平面直角坐标系上画出图象。课堂上师生首先共同订正,然后学生在教师的要求下通过比较,发现各函数之间的联系,做出正确的判断,最终发现图形平移的规律。教师通过多媒体演示图象空间位置的变化,印证学生的.看法。同时可建立下面的知识结构图,让学生以填空的形式完成。
这样处理,三次体现了数形结合思想,学生在观察自己所作图象时会与具体的数、进行比较;教师运用多媒体演示时,学生在印证自己的猜想的过程中会第二次进行数形结合;在教师展示的空间结构图中,学生潜移默化的再次体会到数形结合。
几何图形直观,能够帮助我们正确理解概念和有关性质,它研究的对象是形。代数研究的对象是数.数形结合是研究数学的一个重要观点,是解题的一个有效途径,用数形结合解题,直观,便于发现问题,启发思路,有助于培养学生综合运用数学知识来解决具体问题的能力。这也是我们学习习近平面直角坐标系与在平面直角坐标系上描点绘制函数的原因。在此基础上,如果老师要求同学总结规律,老师再加工得到口诀顺理成章。此时教师如再做一个引申,“口诀可以推广,在初中范围内的一次函数(包括正比例函数)、二次函数(顶点式)、反比例函数的平移,以及在高中范围内的指数函数、对数函数、幂函数的平移也都可以由这个口诀解决。”学生也会在此处更上一层楼。值得一提的是,在后续学习过程中,针对二次函数的一般式要先转化为二次函数的顶点式在考虑平移。
(二)顶点法。由于平移时,图象上的各点都向相同方向移动同样的距离,所以二次函数的平移可以考虑特殊点(特别是顶点)的平移变化。通过顶点的变化(具体看顶点横、纵坐标的变化)来判断一个函数的变化,即“一叶知秋”。
这样处理,体现了划归思想,即一般化特殊,特殊化思想方法的一般模式是:在许多数学问题中,由于抽象、概括程度较高,直接发现或改正这些性质往往感到困难,这时,可以先试探它的特殊、局部情况的特性,从中发现规律和解答的方法。如四边形内角和的求法(未整理归纳出内角和公式时)。教师在此对特殊化思想作一介绍也是合适的。而且教师可以根据学生情况作如下引申:顶点法可推广至分析函数的多种变换,如翻折与旋转。
在另一个班级的教学过程()中,笔者按照这个思路教学,学生不但对本知识点处理得比较好,而且在后面学习函数的性质如增减性与最值问题时学生也能较好的掌握。
渗透数学思想方法篇九
所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。
小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的.教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。
古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。
1.化归思想。
[1][2][3]。
渗透数学思想方法篇十
在新课程的使用过程当中,对于数学的思想的培养在数学的学科已经从成为了教学过程当中的重点,这也是学生学习数学知识的最基础、最重要的部分,数学的思维方式是将其数学有关的知识转化为能力的中介,这是解决一切数学问题的核心。在很多人的观念当中,数学是一个枯燥的学科,在教学过程当中,学生学习感觉到枯燥,老师授课也感觉到困难,在反复的训练过程当中,只能让学生更加厌恶这门学科,并且学习成绩上升不上去,这其中的原因就是没有使用渗透教学的方式,往往学生与老师都忽视了这个问题。在初中的数学的教学当中怎样能够将其渗透教学的思想运用到实际教学过程当中,本文就此展开讨论。
数学的思维方式其看似变化多端,但是本质都是共同的,能够找到他们的共同特点,它是一种逻辑性的思维,可以将正向思维转化为逆向思维,将逆向思维转化为正向思维,其最终得出的结论都是一致的。在数学的解题的过程当中,其解决的'方式往往不是一种。其数学的思维方式还具有将强的灵活性的特点,能够将原来的题目经行微小的改变,这样就能够将题意以及结果完全改变,之后充分的理解题意,才能够让学生轻松的正确的解题,这就是数学思维灵活性的重要表现形式,这就需要教师在对于学生教学的过程当中对于学生进行系统化、有针对化的训练,对于基础知识进行全面的讲解,这样才能够让学生有一个夯实的基础,给未来轻松的解题做出铺垫。
在初中的数学的教学过程当中,在夯实基础知识、解题技巧的同时也要对于其数学的思想方式进行灌输,但是在灌输的过程当中其思维方式并不能让学生们独立的理解和获得,学生们理解过程当中也有一定的困难,这就要求教师在教学过程当中使用渗透教学思想方式。初中教学渗透教学思想方法的必要性体现在如下几个方面:其一,从教学大纲的目标来说,其初中的数学教学不仅仅要给学生教授其基础值是,还需要帮助学生建立基本的思维方式,并且培养学生们的智力。最最基础上来说,初中的数学教学最基本的任务就是要求提高学生的数学思维方式,并且增加学生们对于数学观念,形成良好的数学素质的重要手段;其二,在学生学习的目的来说,初中对于数学学习的目的就是为了培养人才,这就需要学生们应用已经掌握的数学方式来解决现实生活中所遇到的问题,但是现在教学的关键就是是否能让学生们找到解题的中心,从而运用合理的解题思维去解决问题;其三,在教学的内容方面来说,初中数学过程当中无疑不体现出算数向代数的过度以及平面几个的认识这两个方面当中,这些也是基础数学的重要体现,这是学习数学入门最重要的转折点,也作为教学的重点和难点,为了推进对中学生的教育,对于其数学教学大纲要求作出了合理的改变,并且减小了考试的内容,但是对于学生思维方式的理解与掌握并没有因此而下降,这样就给数学思维的教学留出了一定的时间,可以让教师对于学生的思维方式经行培养。
三、初中数学教学中需要渗透的数学思想。
1。函数与方程思想。
2。数形结合思想。
代数与图形结合思想。这种西谁方式通俗的解释就是数形结合,将其抽象代数与实际能够观察到的图形联系起来,这样通过图形的位置、角度等一系列的性质可以将复杂的问题简单化,抽象的问题具体化。
3。分类讨论思想。
样有意识的进行分类的考虑,不仅仅能够将问题变得简单化,还能够将结论经行归纳,从而避免了答案的遗漏、错误,在实际的教学过程当中,还可以培养学生们的归类思维。例如在学习有理数之后,对于字母与实际数字的比较以及对于一次函数y=kx+b这一类图像进行分析,归纳总结,并且对于图像进行分类论述和总结。
4。问题转化思想。
这种方式就是将陌生的、困难的问题转换为以前见过的、简单的问题来解决,这样可以与当前已经能够掌握的知识相联系。在三角函数、因式分解等数学问题以及理论的过程当中,很多都体现了数学转化的思想模式,一般的转化方式有:等价转化、特殊转化、类比转化、一般转化等。
在数学的教学过程当中,每一个环节都包含着深刻的数学思想,这就需要老师进行合理的挖掘。老师可以使用适当的方式来培养学生的学习兴趣,使用渗透教学的思想,能够提高学生学习的效率。
1。知识发生过程中渗透数学思想。
由于新课程标准的要求,在教学过程当中应该注重解题的过程,以及知识的推导演变的过程,尤其上那些定理、性质、公式的烟花过程,最基本的数学思维方法以及解题方法都是在这个过程当中培养出来的,在不同的时间段进行不断的渗透这样就能够让学生理解和记忆,参与到实际应用当中,可以让学生的思维拓展,产生质的飞跃。在推导过程当中,弄清楚前后关系、相互转之间的相关性,并且与其他知识相互联系,这样就能够让学生的创造性思维运用当实际应用当中。
2。在解决问题中激活数学思想。
在实际的教学过程当中,通过解决实际的问题,指导学生怎样进行思考,这样才能够培养学生的数学思想。教师也应该做好总结和归纳,对于每一个类型题进行归纳方法,这也是形成数学思想的一种良好方式,并且还要注重数学在实际的应用,在应用的过程当中培养学生们联想和转化的能力没在初中的教学当中,应哟了很多经典的例子,老师应该适当的进行归类以及合理创新进行联系。
3。例题讲解中渗透数学思想。
对于例题讲述的过程当中,老师应该引导学生合理的使用例题进行思维的拓展,在教学过程当中,老师在讲解一个类型题目后,给学生应该合理的分析解题思路、解题方法、重要的知识点、解题方式,之后也应该要求学生感悟理解,并且让学生整理,之后教师在出一些类型的题对于其加强巩固的训练,让学生们学会归纳,并且自我总结数学的基本思维方法,让学生们在潜意识里面能够存在数学思维,并且促使学生们深化和加强对于数学思维的记忆、理解与使用。
4。教学过程设计中渗透数学思想。
在教学当中往往出现学生们听懂了,理解了但是遇到实际问题还是不会去应用的情况,这种情况出现的原因就是因为老师在上课的过程当中没有注重解题方式,让学生们机械的听讲与做题。老师应在在教学的过程当中应该教会学生们合理的思考,在问题当中领悟到数学的思想,真正的学会用数学的思维方式对于实际生活的应用。
五、总结。
综上所述,数学思想有灵活性以及归一性的特点,在教学过程的当中,只有不断的对于学生进行渗透数学思维方式,学生才能够使用数学来解决实际问题,并且能够合理的应用问题进行解决,教师只有不断的对于学生基础知识进行巩固才能够有效的对于学生思维方式进行培养,并且合理的使用课外书籍,让学生们体会数学思维,从而能提高学生自主学习的能力,让学生们能够让思维打开从而可以增加学生的学习的主动性、建立数学的思维同时也能够将教师的授课能力得到提升。
参考文献:
[1]罗布。浅谈数学思想方法之化归与转化思想[j]。西藏科技,,(04):130—131。
[2]赵亮。转化与化归思想漫谈[j]。中学数学,2012,(05):88—89。
[3]孔翠华。初中数学教学应重视化归思想的培养[j]。中学课程辅导(江苏教师),2012,(02):84。
[4]朱见贤。对中学数学中化归思想的研究[j]。语数外学习(初中版中旬),2012,(01):19—20。
[5]余健棠,侯佳慧。数学化归思想在七年级教学中的渗透——从新人教版七(上)课本谈起[j]。数学教学通讯,2010,(15):10。
渗透数学思想方法篇十一
在新课程的使用过程当中,对于数学的思想的培养在数学的学科已经从成为了教学过程当中的重点,这也是学生学习数学知识的最基础、最重要的部分,数学的思维方式是将其数学有关的知识转化为能力的中介,这是解决一切数学问题的核心。在很多人的观念当中,数学是一个枯燥的学科,在教学过程当中,学生学习感觉到枯燥,老师授课也感觉到困难,在反复的训练过程当中,只能让学生更加厌恶这门学科,并且学习成绩上升不上去,这其中的原因就是没有使用渗透教学的方式,往往学生与老师都忽视了这个问题。在初中的数学的教学当中怎样能够将其渗透教学的思想运用到实际教学过程当中,本文就此展开讨论。
数学的思维方式其看似变化多端,但是本质都是共同的,能够找到他们的共同特点,它是一种逻辑性的思维,可以将正向思维转化为逆向思维,将逆向思维转化为正向思维,其最终得出的结论都是一致的。在数学的解题的过程当中,其解决的'方式往往不是一种。其数学的思维方式还具有将强的灵活性的特点,能够将原来的题目经行微小的改变,这样就能够将题意以及结果完全改变,之后充分的理解题意,才能够让学生轻松的正确的解题,这就是数学思维灵活性的重要表现形式,这就需要教师在对于学生教学的过程当中对于学生进行系统化、有针对化的训练,对于基础知识进行全面的讲解,这样才能够让学生有一个夯实的基础,给未来轻松的解题做出铺垫。
在初中的数学的教学过程当中,在夯实基础知识、解题技巧的同时也要对于其数学的思想方式进行灌输,但是在灌输的过程当中其思维方式并不能让学生们独立的理解和获得,学生们理解过程当中也有一定的困难,这就要求教师在教学过程当中使用渗透教学思想方式。初中教学渗透教学思想方法的必要性体现在如下几个方面:其一,从教学大纲的目标来说,其初中的数学教学不仅仅要给学生教授其基础值是,还需要帮助学生建立基本的思维方式,并且培养学生们的智力。最最基础上来说,初中的数学教学最基本的任务就是要求提高学生的数学思维方式,并且增加学生们对于数学观念,形成良好的数学素质的重要手段;其二,在学生学习的目的来说,初中对于数学学习的目的就是为了培养人才,这就需要学生们应用已经掌握的数学方式来解决现实生活中所遇到的问题,但是现在教学的关键就是是否能让学生们找到解题的中心,从而运用合理的解题思维去解决问题;其三,在教学的内容方面来说,初中数学过程当中无疑不体现出算数向代数的过度以及平面几个的认识这两个方面当中,这些也是基础数学的重要体现,这是学习数学入门最重要的转折点,也作为教学的重点和难点,为了推进对中学生的教育,对于其数学教学大纲要求作出了合理的改变,并且减小了考试的内容,但是对于学生思维方式的理解与掌握并没有因此而下降,这样就给数学思维的教学留出了一定的时间,可以让教师对于学生的思维方式经行培养。
1。函数与方程思想。
2。数形结合思想。
代数与图形结合思想。这种西谁方式通俗的解释就是数形结合,将其抽象代数与实际能够观察到的图形联系起来,这样通过图形的位置、角度等一系列的性质可以将复杂的问题简单化,抽象的问题具体化。
3。分类讨论思想。
样有意识的进行分类的考虑,不仅仅能够将问题变得简单化,还能够将结论经行归纳,从而避免了答案的遗漏、错误,在实际的教学过程当中,还可以培养学生们的归类思维。例如在学习有理数之后,对于字母与实际数字的比较以及对于一次函数y=kx+b这一类图像进行分析,归纳总结,并且对于图像进行分类论述和总结。
4。问题转化思想。
这种方式就是将陌生的、困难的问题转换为以前见过的、简单的问题来解决,这样可以与当前已经能够掌握的知识相联系。在三角函数、因式分解等数学问题以及理论的过程当中,很多都体现了数学转化的思想模式,一般的转化方式有:等价转化、特殊转化、类比转化、一般转化等。
在数学的教学过程当中,每一个环节都包含着深刻的数学思想,这就需要老师进行合理的挖掘。老师可以使用适当的方式来培养学生的学习兴趣,使用渗透教学的思想,能够提高学生学习的效率。
1。知识发生过程中渗透数学思想。
由于新课程标准的要求,在教学过程当中应该注重解题的过程,以及知识的推导演变的过程,尤其上那些定理、性质、公式的烟花过程,最基本的数学思维方法以及解题方法都是在这个过程当中培养出来的,在不同的时间段进行不断的渗透这样就能够让学生理解和记忆,参与到实际应用当中,可以让学生的思维拓展,产生质的飞跃。在推导过程当中,弄清楚前后关系、相互转之间的相关性,并且与其他知识相互联系,这样就能够让学生的创造性思维运用当实际应用当中。
2。在解决问题中激活数学思想。
在实际的教学过程当中,通过解决实际的问题,指导学生怎样进行思考,这样才能够培养学生的数学思想。教师也应该做好总结和归纳,对于每一个类型题进行归纳方法,这也是形成数学思想的一种良好方式,并且还要注重数学在实际的应用,在应用的过程当中培养学生们联想和转化的能力没在初中的教学当中,应哟了很多经典的例子,老师应该适当的进行归类以及合理创新进行联系。
3。例题讲解中渗透数学思想。
对于例题讲述的过程当中,老师应该引导学生合理的使用例题进行思维的拓展,在教学过程当中,老师在讲解一个类型题目后,给学生应该合理的分析解题思路、解题方法、重要的知识点、解题方式,之后也应该要求学生感悟理解,并且让学生整理,之后教师在出一些类型的题对于其加强巩固的训练,让学生们学会归纳,并且自我总结数学的基本思维方法,让学生们在潜意识里面能够存在数学思维,并且促使学生们深化和加强对于数学思维的记忆、理解与使用。
在教学当中往往出现学生们听懂了,理解了但是遇到实际问题还是不会去应用的情况,这种情况出现的原因就是因为老师在上课的过程当中没有注重解题方式,让学生们机械的听讲与做题。老师应在在教学的过程当中应该教会学生们合理的思考,在问题当中领悟到数学的思想,真正的学会用数学的思维方式对于实际生活的应用。
五、总结。
综上所述,数学思想有灵活性以及归一性的特点,在教学过程的当中,只有不断的对于学生进行渗透数学思维方式,学生才能够使用数学来解决实际问题,并且能够合理的应用问题进行解决,教师只有不断的对于学生基础知识进行巩固才能够有效的对于学生思维方式进行培养,并且合理的使用课外书籍,让学生们体会数学思维,从而能提高学生自主学习的能力,让学生们能够让思维打开从而可以增加学生的学习的主动性、建立数学的思维同时也能够将教师的授课能力得到提升。
参考文献:
[1]罗布。浅谈数学思想方法之化归与转化思想[j]。西藏科技,,(04):130—131。
[2]赵亮。转化与化归思想漫谈[j]。中学数学,2012,(05):88—89。
[3]孔翠华。初中数学教学应重视化归思想的培养[j]。中学课程辅导(江苏教师),2012,(02):84。
[4]朱见贤。对中学数学中化归思想的研究[j]。语数外学习(初中版中旬),2012,(01):19—20。
[5]余健棠,侯佳慧。数学化归思想在七年级教学中的渗透——从新人教版七(上)课本谈起[j]。数学教学通讯,,(15):10。
渗透数学思想方法篇十二
数学思想方法比形式化的知识更重要,教师在教学过程中要引导学生领会和掌握隐含在课本数学内容背后的数学思想方法,使学生能够不断提高思维水平,优化思维品质,培养创新精神和实践能力,真正懂得数学价值,建立科学的数学观念,并形成良好的个性品质及科学世界观和方法论,最终促进学生整体素质提高。
思想是认识的高级阶段,是事物本质的、高级抽象的、概括的认识。数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中所提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学体系和用数学解决问题的指导思想。数学方法是以数学为工具进行科学研究的过程中,所采用的各种方式、手段、途径等,数学方法就是提出、分析、处理和解决数学问题的概括性策略。
数学方法的运用、实施与数学思想的概括、提炼是并行不悖的,是相互为用的,互为表里的。数学思想是数学中处理问题的基本观点,是对数学基础知识与基本方法本质的概括,是其精神实质和理论根据,是创造性地发展数学的指导方针。数学思想来源于数学基础知识与基本方法,又高于数学知识与方法,居于更高层次的地位,它指导知识与方法的运用,它能使知识向更深、更高层次发展。
1.有利于学生对数学基本概念与原理的理解。
数学思想方法是数学学科的“一般原理”,学生学习了数学思想方法就能够更好地理解和掌握数学内容,有助于学生形成优化的、关联的、动态的数学观。()学生一旦具备了数学严密的逻辑思维能力,对于所修专业基础课程必须了解掌握的基本概念及相关原理就可以更好地全面分析和理解,达到事半功倍的效果。
2.有利于学生更好地将数学和实践相结合。
数学实践能力的培养可以在数学知识学习过程中自发形成和发展,但是有意识地将数学思想和方法渗透到职业教育中的不同思维层次,沿着学生的思维轨迹因势利导,使学生克服学习中的恐惧和盲目心理,激发学习兴趣,提高自觉性,有助于学生将所学数学知识应用于实践,提高其解决问题的能力。
3.有利于学生数学创新意识的培养。
数学思想方法是数学知识的本质,为分析、处理和解决数学问题提供了指导方针和解题策略。学生在数学教师的引导下,通过对蕴含于其中的数学思想方法有所领悟,能激发出数学潜能,积极主动地参与到教师的全程教学中,培养独立思考,独立解决问题的能力。数学是一门思维学科,数学思想方法可以极大地锻炼学生的形象思维能力和逻辑思维能力,向问题的深度和广度发展,达到对事物全面的认识,有利于学生创新意识的培养。
1.教师需要认真备课,充分挖掘教材中的数学思想方法。
数学教材中的概念、定理、公式等都是以结论的形式呈现出来的,即使有推导过程,学生也是重视结果而不重视过程,有公式就可以解题。故其中蕴含的思想方法要么没有在课本中体现出来,要么很容易被学生所忽略。然而,导致结论产生的'思维活动、思想方法,恰恰是数学结构体系中最具价值的东西。所以,教师要刻苦钻研教材,挖掘教材中所蕴含的数学思想方法,以便在教学实践中适时渗透数学思想方法。
2.将思想方法渗透于学生学习新知识过程中。
数学思想方法与数学知识是密切联系的统一体,没有脱离数学知识的数学思想方法,也没有不含数学思想方法的数学知识。因此,教师应在传授数学知识的同时渗透数学思想方法,这样才能使学生对所学知识有真正的理解和掌握,才能使学生真正领略到数学思想方法的真谛。数学知识的形成、发展过程,实际上也是数学思想方法的形成、发展过程。像概念的形成过程,公式、定理的推导过程,问题的发现过程,方法的思考过程,思路的探索过程,规律的揭示过程等都蕴藏着丰富的数学思想方法。因此,教师在数学教学中,不要直接给出概念的定义,而要展示概念的形成过程,揭示概念的本质;对公式、定理不过早地给结论,引导学生积极参与结论的探索、发现、推理过程,从中领悟思维过程中的数学思想方法。
3.将数学思想方法渗透于解题思路的探索过程中。
在解题过程中教师要带领学生逐步探索数学思想方法,使学生在解题过程中充分领悟数学思想方法的重要作用和指导意义。譬如说,数形结合思想是充分利用图形直观帮助学生理解题意的重要手段,它可使抽象的内容变为具体,采用画线段图的方法帮助学生分析数量关系,从而化难为易。化归思想是解题的一种基本思想,贯穿于中学数学的整个学习过程,学生一旦形成了化归意识,就能化未知为已知,化繁为简,化特殊为一般,优化解题方法。还有归纳演绎方法也是解题时常用的一种数学思想方法,这些思想方法都可以在解题的探索过程中帮我们指明前进的方向。让学生提高数学的学习兴趣,提高学习成绩,最重要的是在这个过程中不断接触数学中深层次的内容,提高学生的数学素质。
解题教学过程中指导学生数学思想方法的运用是一个潜移默化的过程,必须通过学生自己反复体验和实践才能逐渐形成。因此教师要在解题教学过程中指导学生有意识地去运用数学思想方法解题。在学生的解题过程中,不同学生由于在学习过程中的理解能力不同,导致对各种思想方法的掌握程度会有非常大的差别。这样就需要教师在教学过程中要不断地进行分析和总结,注意归纳学生作业中出现的错误类型,有的放矢地进行教学;另外通过学生的错误,了解学生对于数学思想方法的理解情况,在课堂上进行细化讲解和分析,在和学生的不断互动中,在循序渐进过程中,学生逐步掌握数学的思想方法。
数学思想方法不但分散在教材中的各个知识点,而且“隐蔽”在数学知识体系中。因此,在平时教学中,要有目的、有计划地对数学思想作出归纳和总结,使学生有意识地自觉地参与数学思想的提炼与概括;尤其是学习了一章节或系统复习中,将数学思想方法概括出来,不但使学生对已学知识有统摄作用和指导意义,更能加强学生运用数学思想方法解决实际问题的意识,从而有利于强化所学知识,形成独立分析问题与解决问题的能力。概括数学思想方法一般分为两步:一是揭示数学思想内容、规律,即将数学共同具有的属性或关系抽出来;二是明确数学思想方法与知识的联系,将抽出来的共性推广到同类的全部对象上去,从而实现从个别认识到一般认识。
结语。
数学思想方法是对数学知识发生过程的提炼、抽象、概括和升华,也是对数学规律的理性认识。它直接支配数学的实践活动,是解决数学问题的灵魂。在教学过程中要本着思想方法与教材内容、学生认知水平相适应的原则。我们要在教学中对常用、基础的数学思想方法大胆实践、坚持不懈、持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,引导学生在学习中认识一些分析问题、解决问题的数学思想方法,从反复实践、循序渐进中升华为终生受用的分析问题、解决问题的思想方法、手段。
总之,在数学教学中,以数学思想方法的渗透为主线,有利于学生对数学知识的理解和掌握,有利于提高学生的思维品质,优化学生的思维结构。
渗透数学思想方法篇十三
摘要:学习数学的奥秘就是要掌握数学思想方法。学习数学要学会三方面内容:知识结构、精神、思想方法。一般小学数学中一般都会结合一些数学思想方法,帮助学生培养创造能力和活跃思维。小学阶段的主要数学思想方法有:类比、归纳、统计等,这些都给小学生数学课堂增添了活力,帮助小学生在学习数学的过程中能够得到一定的收获,并为未来的学习打下良好的基础。
关键词:数学思想方法;小学数学教学;渗透。
引言:
数学思想是对数学内容和方法的一种总结,数学思想不仅可以用来解决数学活动的问题,还能给一些难以解决的问题提出合理的建议和解题方式。根据数学思想可以解答很多问题,并且可以找到解决难题的思路。数学方法是从数学的角度提出问题的方式并且根据这些方式来进行解决数学问题。数学思想和数学方法都是在数学概念的基础上建立的,但是二者有时候难以区分,但是二者都可以帮助学生提高数学理解能力,还能为以后学好数学打好基础,让学生在数学方法和数学思想的带领下获得更好的学习体验。
数学思想就是充分认识数学概念后,从中总结出的规律然后转化为解题的思路,在平时中经常被利用。数学理论中有很多概括性很强和非常抽象的概念,并且在解题的时候,有时候一个问题就会包含着很多种解题方式,也就是说蕴含着很多种数学思想。在我国的小学数学阶段的教学过程中,主要是几种比较简单的数学思想:类比、归纳、统计和假设等。我国的小学教学中主要是以“回答难题”为核心目标,但是如何把一个问题完美解答这是一个比较复杂的过程,小学生掌握的数学方法比较少,因此就要教会他们这几种常用的数学方法才能找到解决问题的最佳方法,并且还能塑造小学生独立思考和学习的能力[1]。
1.1类比法:
很多数学家在做了很多实验后发现,在数学中,用类比的方式可以发现很多平时不易得到的结论,很多真理都是通过这个方法得到的。并且在这个思想是一个很重要的数学思想,在很多难题中都能给人以解题的灵感和思路。类比通常都是用在两个有相似特点的事物之间,找出相抵之处,然后做出判断的`解题思想。一般小学阶段的类比方法会比较简单,常用于推导公式和发现新公式中。小学的习题比较简单,一般都会用类比的方式建立一个解题模式,然后帮助学生去解决难题或者是相似的问题。一般教师都会教会学生如何运用习题视力进行判断和推理,培养学生检测定义的能力[2]。
1.2归纳法:
归纳也就是总结。一般都是很多理论下,逐渐归纳出一些比较规矩的数学思想,一般都是要确立事物本身有的属性,然后在寻找出其中蕴含的普遍性规律。在小学阶段的教学中,一般都是通过对数字的观察和例子的分析,逐渐得到相关结论,让学生开动思维,变得富有创造力。
相关文档
您可能关注的文档
- 最新走出校园初中怎么写(优秀12篇)
- 初中追星英语美文 关于追星的英语作文议论文(四篇)
- 走出校园初中范本(优质15篇)
- 最新公司决议书范文范本(优秀9篇)
- 树立危机意识演讲稿怎么写(优秀12篇)
- 最新参观安阳文字博物馆范本(精选12篇)
- 最新想象类教师评语(实用9篇)
- 穿衣自由的演讲稿(优秀9篇)
- 昆虫记读后感范文昆虫记读书心得感悟怎么写(通用10篇)
- 初中雨经典范文简短(大全19篇)
- 探索平面设计师工作总结的重要性(汇总14篇)
- 平面设计师工作总结体会与收获大全(20篇)
- 平面设计师工作总结的实用指南(热门18篇)
- 免费个人简历电子版模板(优秀12篇)
- 个人简历电子版免费模板推荐(通用20篇)
- 免费个人简历电子版制作教程(模板17篇)
- 学校贫困补助申请书(通用23篇)
- 学校贫困补助申请书的重要性范文(19篇)
- 学校贫困补助申请书的核心要点(专业16篇)
- 学校贫困补助申请书的申请流程(热门18篇)
- 法制教育讲座心得体会大全(17篇)
- 教育工作者的超市工作总结与计划(模板18篇)
- 教学秘书的工作总结案例(专业13篇)
- 教师的超市工作总结与计划(精选18篇)
- 单位趣味运动会总结(模板21篇)
- 礼品店创业计划书的重要性(实用16篇)
- 消防队月度工作总结报告(热门18篇)
- 工艺技术员工作总结(专业18篇)
- 大学学生会秘书处工作总结(模板22篇)
- 医院科秘书工作总结(专业14篇)