大学数学论文的范文通用(大全13篇)

  • 上传日期:2023-11-12 20:47:24 |
  • ZTFB |
  • 8页

大自然是我们最好的老师,它教会我们如何与环境和谐相处。较为完美的总结应该突出重点,避免冗长和繁杂的内容。下面是一些经典的写作范文,希望对大家有所启发。

大学数学论文的范文通用篇一

本期所任八年级(3)班的数学科教学,从上学年期末考试的总体来看,这个班学生的学习成绩在前面的基础上都有所进步。但在学生所学知识的掌握程度上,形成了两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,而对后进生来说,简单的基础知识还不能有效的掌握,成绩较差。八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。根据上学年学生学习的分析情况来看,有部分学生基础特差,问题较严重。要在本期获得理想成绩,作为老师必须要付出更大努力,进一步查漏补缺,充分发挥学生学习的主体作用,注重教学方法,培养能力。

二、教材分析。

本学期教学内容,共计五章:

第十一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件,利用三角形全等的判定方法证明角平分线的性质。更多的注重学生推理意识的建立和对推理过程的理解,使学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章轴对称立足于生活经验和数学活动经历,从生活中的图形入手,通过对生活中轴对称现象的观察,从整体的角度直观认识并概括出轴对称的特征;逐步分析角、线段、等腰三角形等简单的轴对称图形,进一步引入等腰三角形的性质和判定的概念。

第十三章本章主要学习平方根与立方根以及实数的有关概念和运算。这一章是学生在初中学习过程中的一个里程碑,他们要从有理数进入到无理数的领域,认识上将从有理数扩展到实数的范围,让学生进一步深化对数的认识,扩大学生的数学视野与界限。

第十四章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数------一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。通过探索一次函数及其图象的性质,利用一次函数及其图象解决有关现实问题;并将正比例函数纳入一次函数的研究中去,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章本章主要内容是整式的乘除运算、乘法公式以及因式分解。整式在形式上力求突出:整式及整式运算产生的实际背景------使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程------为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握------设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

三、教学目标。

在知识与技能上,通过对三角形全等的学习,能利用全等三角形解决实际问题,让学生能把所学的轴对称知识应用到实际生活中,学习平方根与立方根以及实数的相关知识,初步理解函数的定义,掌握理解一次函数和一次函数的性质与图像及其应用,培养数形结合的思想方法,使学生会进行整式的乘除法运算及因式分解。通过本学期的学习,学生在数学的认识与理解上要再上一个台阶。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。在过程与方法上,通过学生积极参与对知识的探究,经历发现知识以及知识间的内在联系,让学生经历在发现知识道路上的坎坎坷坷,从而达到深刻理解掌握知识的目的。在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的最大值,培养学生良好的学习习惯,发展学生的非智力因素,全面提高学生素质。

四、教学措施。

1、加强学生的思想品德素质教育,转变学生的学习态度。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、教学中抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

5、认真研读教材,不断改进教学方法,提高教学水平及自身业务素养。

6、教学中注重自主学习、合作学习、探究学习。

五、教学进度表。

周次教学内容课时备注。

一11.1全等三角形;11.2全等三角形的判定1+4。

二11.2全等三角形的判定11.3角平分线的性质3+2。

三活动,小结,单元测验3。

四12.1轴对称5。

五12.2作轴对称图形5。

六国庆长假国庆放假。

七12.3等腰三角形5。

八活动,小结,单元测验3。

九13.1平方根;13.2立方根3+2。

十13.3实数;活动,小结,单元测验2+3。

十一14.1变量与函数5。

十二14.2一次函数5。

十三14.3用函数观点看方程(组)与不等式;14.4课题学习选择方案3+2。

十四活动,小结,单元测验3。

十五15.1整式的乘法5。

十六15.2乘法公式;15.3整式的除-§法3+2。

十七15.4因式分解5。

十八活动,小结,单元测验3。

十九期末复习5。

二十期末复习考试。

大学数学论文的范文通用篇二

苏轼道德歇后语一封信资料了贬义词实施方案的简报课外知识暑假作业比喻句复习题了评课稿公文志愿书了听课党员节日合同:标语写法古诗形容词了提纲测试题主义通告履职:说明书仿写工作安排了卷首读后感开学第一课颁奖词,事迹工作计划师恩。

大学数学论文的范文通用篇三

通过数学与应用数学专业毕业实习,能够让我们学到了很多在数学与应用数学专业课堂上根本就学不到的知识,提高调查研究、文献检索和搜集资料的能力,提高数学与应用数学理论与实际相结合的能力,提高协同合作及组织工作的能力,同时也打开了视野,增长了见识。只有把从书本上学到的数学与应用数学专业理论知识应用于实践中,才能真正掌握这门知识。

我很荣幸进入xx教育集团开展毕业实习。为了更好地适应从学生到一个具备完善职业技能的工作人员,实习单位主管领导首先给我们分发数学与应用数学专业相关岗位从业相关知识材料进行一些基础知识的自主学习,并安排专门的老同事对岗位所涉及的相关知识进行专项培训。

在实习过程,单位安排的了老师作为技术指导,xx老师是位非常和蔼亲切的人,他也是数学与应用数学专业毕业的,从事数学与应用数学领域工作已经有十年。他先带领我们熟悉工作环境和数学与应用数学专业岗位的相关业务,之后他亲切的和我们交谈关于实习工作性质以及数学与应用数学专业课堂上知识在实际工作中应用容易遇到的问题。xx老师带领我们认识实习单位的其他工作人员,并让我们虚心地向这些辛勤地在数学与应用数学专业工作岗位上的前辈学习,在遇到不懂得问题后要积极请教前辈。

用数学知识处理相关文书。具体实习内容过程如下:

第一、招聘。协助人资部处理首先,要熟悉招聘流程。其次,与用人部门保持密切的联系,了解用人部门的需求状况。

第二、录用并建立员工档案。给员工办好入职手续,包括签订协议、劳动合同、办工作证等等;在合同方面遇到问题时,才发现在大学里学数学与应用数学专业理论知识之外,更应该学习合同相关实践法律知识。

第三、单位考勤管理,完成每月考勤记录,并根据考勤情况进行薪资计算。虽然只是简单的计算,但也需要excel相关知识。在大学里学习数学与应用数学专业知识之外,我利用课余时间考取电脑应用二级证书终于在这里发挥了作用。

短暂的实习生活除了掌握数学与应用数学专业相关工作经验,最大的收获莫过于学习到了很多在数学与应用数学课堂上无法学到的知识,还有人生角色的变换——从校园思维模式到职场思维模式的转变,为今后尽快适应融入数学与应用数学专业岗位职场生涯奠定了基础。

当我们从母校——××大学毕业,就意味着要踏上职业生涯的道路,对于数学与应用数学专业的应届生的我来说,还没有足够的社会经验。

大学数学论文的范文通用篇四

摘要:通识教育是我国高等教育研究的热点问题,数学类通识课程把数学作为一种文化,从不同的视角去看数学,有利于提高工科院校学生的文化素养,避免由于只重视技能训练而带来的数学素质结构的片面化,同时也是培养学生良好思维能力、创新能力的重要载体。文章结合桂林电子科技大学开设数学文化课程的教学实践,探讨了通识课改革的方法和措施。

关键词:数学文化;通识教育;教学改革。

“通识教育”一词起源于19世纪,它是一套旨在拓展基础、强化素质的跨学科的教育体系,其目的是让学生从本科教育的基本领域里获取广泛的知识,了解不同学术领域的研究思路和研究方法,同时,借助通识教育开拓学生的眼界,使其对学科整体有所了解,培养学生将各种知识融会贯通的综合能力。自从19世纪初美国博德学院的帕卡德教授第一次把通识与大学教育联系起来,通识教育开始进入人们的视野,在20世纪,通识教育已经广泛成为欧美大学的必修科目。通识教育纳入我国本科教育体系的历史并不长,近年来,结合实现高等教育“内涵式”发展的需求,通识教育逐渐成为高等教育界关注的热点,开设通识课程的高校不断增多,课程的种类也不断增加[1]。纵览各个高校的通识教育课程,大致可以分为社会科学素养、人文素养、自然科学与技术素养、美学艺术素养、实践能力素养等五大模块,力图使学生从不同的角度来认识现象,获得知识,开拓视野,提升能力。笔者长期从事大学数学公共课的教学,认为在自然科学与技术素养类的通识课中,数学类课程无疑是一个很好的载体。以笔者所在桂林电子科技大学为例,高等数学、线性代数、概率论与数理统计是工科学生必修的三门数学基础课,其掌握程度直接影响到学生专业课的学习,以及学生的基本素质和能力[2]。在传统的数学课堂上,由于学时的限制,教师很少能够拓展课本知识,造成重结论轻过程、重理论轻应用的局面,忽略了对学生的数学思维、创新意识和创新能力的培养,因此学生在大一阶段学习完课程以后往往只会计算,不能理解数学概念的背景和应用,只有在后续专业课中用到数学才能粗略体会数学的作用,但仍对一些基本数学原理知其然而不知其所以然。为了解决上述问题,可以考虑适当开设数学通识课,作为大学数学系列课程的有益补充,让学生重新审视数学、认识数学。下面,以笔者所在桂林电子科技大学为例,探讨数学通识课程的改革思路。

一、适应形势,开设数学文化网络课程。

和高校中的其他课程相比较,通识教育更加自由,可以被各个专业的学生学习,学生可以基于兴趣爱好,自由地选择各类通识课程。传统的通识课程通常是以线下课的模式来进行的,一般是安排在晚上,教师在固定的时间内在教室进行授课,课后很少与学生进行交流。笔者所在的学校是工科院校,学生课程较多,而且不少实验课都安排在晚上,所以学校很早就加入了尔雅通识平台,利用网课的形式开设通识课程,方便学生在课余的时间修读课程。对于学习安排而言,网络授课更为自由开放:传统的课堂教育要求学生在固定的时间、固定的地点进行固定的学习安排,但是不同学生的学习习惯和学习能力是不同的,没有学会的学生没有重新学习的机会,这样的安排在某种程度上是不公平的。而网课可以把课程保存在云端,学生可以在任何时间任何地点进行学习,这样一来学生可以更为自由地安排学习时间,并且还可以通过重播反复学习,弥补学习能力不足的缺陷。桂林电子科技大学在启动了校内的网络学习的平台———漓江学堂,笔者所在的教学团队于在该平台上线了“数学文化观赏”课程,这是一门面向高校师生的以介绍数学为目的的通识教育网络课程,课程通过“数学文化”这个载体,以数学思想、数学概念、数学能力、数学历史等作为主要内容,通过25个视频从不同角度揭示了丰富多彩的数学文化与人类社会发展之间的共生与互动。该课程是桂林电子科技大学于开始建设的24门漓江学堂课程之一,209月在漓江学堂正式上线,至今已开课6个学期,累计选课人数约1600人。初,“数学文化观赏”课程二期建设启动,课程视频扩充到50个,并在中国大学mooc上线开设了独立spoc课程。spoc课程作为后mooc时代的产物,采取了实体课堂与在线教育相结合的混合教学模式,融合了mooc的优点,弥补了传统教育的不足。与传统网课相比,教师更容易把控教学,使学生实现课前主动自学、课上积极互动、课下踊跃交流思考的学习模式。

二、精准定位,合理安排教学内容。

一提到数学类的通识课程,很多人想到的可能是“数学建模”“数学思维”等课程,在中国大学mooc上,也有一些主打“数学文化”的通识课,以介绍数学发展史为主,这不免让人思考:到底什么是“数学文化”,应该如何向学生推广“数学文化”?“数学文化”这一概念,最早出现在西方数学哲学的研究当中。19世纪,怀特(white)最早提出了“数学文化”的观点,接着克莱因(kline)的几部代表作,包括《古今数学思想》《西方文化中的数学》《数学:确定性的丧失》,赋予数学文化以浓重的人文色彩[3]。近年来,国内不少学者也对“数学文化”进行了研究,在中学阶段数学教材的编写中,穿插了很多诸如“数学史话”“数学美学”的内容。然而到了大学阶段,数学教材往往理论性较强,联系实际较少,学生在“数学文化”的学习方面反而出现了缺失。因此,对于大学本科生而言,数学文化课的定位是对高等数学课的知识补充,其目标是介绍数学概念的形成背景,以及数学如何与自然科学中其他学科交叉融合,促进其他学科的发展。“数学文化观赏”课程的教学内容约为12周,在中国大学mooc上线后,课程团队重新整合了课程内容,把课程分为5个模块:“数学简史”“数学社会”“数学哲学”“数学概念”和“数学人物”。“数学简史”从古代数学一直串讲到现代数学,追溯数学在内容、思想和方法上的演变、发展过程;“数学社会”模块侧重于介绍数学的应用,从多角度展现数学的实用性,例如数据挖掘、算法设计、数学建模等等;“数学哲学”部分是从哲学的层面探究数学,介绍数学研究中的常规思维和非常规思维,探讨数学中的美学;“数学概念”模块通过生动的例子介绍数学中的抽象概念,比如其中的一课“无穷之旅”,以希尔伯特旅馆为例,帮助学生理解“无穷大”的概念,理解无限与有限的辩证统一;“数学人物”则是通过介绍中外数学家们的数学成就和小故事,让学生明白成功并非一蹴而就,而是需要持久的努力和刻苦的钻研[4]。除了重新编排教学内容以外,我们还充分利用mooc的讨论区,每一章都会发布若干讨论题,鼓励学生积极参与,课程上线仅一学期,学生累积发帖数就达到了2500余条。

三、多元评价,改革课程考核方式。

传统的通识课程,通常是以撰写论文作为考核的方式,而我们的课程则采用灵活多样的考核方式。课程在校内平台上线时,设计了a、b、c三种考核等级,供学生自主选择。三个等级的满分分别为100分、90分和80分。a档考试要求学生把数学与专业相结合,制作与课程相关的微课小视频,重点考查学生查阅文献和归纳整理资料的能力,并要求学生具备一定的ppt制作水平和视频剪辑能力;b档考试要求学生撰写论文,论文的题目应结合数学文化与学生的专业知识,侧重于考察学生对课程相关问题的理解能力以及书面表达能力;c档考试为闭卷考试,要求学生在规定时间内完成简述题的作答,重在考察学生对课程内容的理解和掌握。课程上线几年来,选a档考试的人数通常会占选课人数的65%以上,说明学生对于开放性试题的接受程度更高。课程在中国大学mooc上线后,课程团队除了保留原有的a、b两档考试模式以外,还利用平台增设单元测试和随堂测试。在后续的课程建设中,我们计划增加其他考核模式,例如主观题学生互评、小组讨论与展示等,充分利用mooc平台优势,改革考试模式和评价机制,通过开放性和创造性的考核,考察学生的综合素质能力,凸显通识课作为综合素养课程的价值使命。

四、探索尝试,取得一定教学效果。

本课程自开课以来,选课人数接近1600人,已有1500余名学生完成考试,其中1400余名学生考试合格。在学生的微课作品中,不乏一些优秀作品,在征得学生的同意后,我们制作了优秀作品展示在课程qq群里。从课程结束后发放的调查问卷显示,大部分学生对课程的满意程度较高,85%以上的学生认为本课程对学习有帮助,84.95%的学生对课程的总体评价为满意或非常满意,88.17%的学生对教师的总体评价为满意或非常满意。从课程的难度来看,74.19%的学生认为本课程的难度适中;从课程的时长来看,73.12%的学生认为本课程的时长合适;在考核的方式和难度方面,73.12%的学生对课程的考核方式表示满意或非常满意,80.65%的学生认为考核难度适中;总体评价方面,学生对课程评价的分值为4.34分(满分为5分),对教师的评价分值为4.54分(满分为5分)。平时的教学过程也显示出学生参与教学的积极性较高,能够在讨论区积极回帖和发帖,同时学生也对课程提出了一些建议,例如希望能够更好地将数学原理与专业课程结合,把抽象的概念寓于生动有趣的问题中,甚至也有不少学生表示期待能在课程中看到一些数学前沿问题。高等教育的主要任务是培养基础理论扎实、专业知识面广、实践动手能力强、具有较强创新能力的人才,数学文化通识课程也应当从这些方面入手,努力达到学科交叉和素质教育的基本目标,注重“以学生为本”,构建立体的知识网络,从“育人”的角度出发,对数学通识课程进行全方位的改革,提高学生的数学素养和综合素养,从而让学生受益终生。

参考文献:

[2]董亚娟.通识教育与创新型人才培养———兼论通识课“经济生活中的数学”[j].人才培养与教学改革———浙江工商大学教学改革论文集,2014(1).

[3]项晶菁,李琪.高等工科院校开设数学文化通识课的实践与思考[c]//educationandeducationmanagement(eemv2):113-117.

[4]赵琪,张久军,姚成贵.大学数学文化课教学的实践与探索[j].辽宁大学学报(自然科学版),(3).

大学数学论文的范文通用篇五

在新的历史时期,无论是提高全族的科学文化水平,掌握现代科技知识和科学管理方法,还是培养社会主义新人,都要求我们的干部具有较高的写作能力。

1.1创新性。

作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。

1.2科学性。

科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。

1.3规范性。

规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。

2.1大题小作。

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。

2.2关门写稿。

一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。

2.3形式思维混乱。

科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。

数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:。

(1)需要性选题应从社会需要和科学发展的需要出发。

(2)创新性选题应是国内外还没有人研究过或是没有充分研究过的问题。

(3)科学性选题应有最基本的科学事实作依据。

(4)可行性选题应充分考虑从事研究的主客观条件,研究方案切实可行。

4.1语言表达确切。

从选词,造句,段落,篇章,标点符号都应正确无误。

4.2语言表达清晰简洁。

语句通顺,脉络清楚,行文流畅,语言简洁。

4.3语言朴实。

语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。

大学数学论文的范文通用篇六

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状。

(一)教学观念陈旧化。

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化。

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用。

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施。

(一)在公式中使用建模思想。

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式。

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的'方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛。

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语。

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献:。

大学数学论文的范文通用篇七

很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。

数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。

1.1创新性。

作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的`成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。

1.2科学性。

科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。

1.3规范性。

规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。

2.1大题小作。

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。

2.2关门写稿。

一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。

2.3形式思维混乱。

科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。

数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:。

(1)需要性选题应从社会需要和科学发展的需要出发。

(2)创新性选题应是国内外还没有人研究过或是没有充分研究过的问题。

(3)科学性选题应有最基本的科学事实作依据。

(4)可行性选题应充分考虑从事研究的主客观条件,研究方案切实可行。

4.1语言表达确切。

从选词,造句,段落,篇章,标点符号都应正确无误。

4.2语言表达清晰简洁。

语句通顺,脉络清楚,行文流畅,语言简洁。

4.3语言朴实。

语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。参考文献(略)(摘自《长春大学学报》.1,原文:“谈数学论文写作”,作者:王晓阳长春大学学报编辑部)。

大学数学论文的范文通用篇八

摘要:数学是一门基于工具和应用程序的专业课程。它是人们最基本的专业知识和专业技能,也是经济学发展趋势的关键。本文从数学在经济预测与决策中的重要性、应用以及经济决策与预测在经济活动中的重要作用三个方面着手进行分析。

关键词:数学;经济预测与决策;应用;重要性。

随着中国经济发展出现新形势,产业结构改革创新水平不断提高,经济研究中数学知识和基础数学理论的必要性日益突出,经济预测和决策成为经济研究的关键内容,在经济主题活动中起着关键作用。如今,数学在经济预测和决策中的应用不断发展,数学在经济预测和经济决策中的应用具有广阔的市场前景。

一、数学在经济预测与决策中的重要性。

(一)数学与经济行为密切相关、相互促进当谈到经济学和数学之间的联系时,它有着悠久的历史。在早期,每个人都学习了业务服务中加、减、乘、除的基本数学。一方面,经济活动是人们最重要、最基本的化学物质生产和制造主题活动。在实践活动和经济活动的探索中,每个人都必须具备数学知识,促进对数学定律的讨论和科学研究,并促进数学基础理论的深入发展趋势。另一方面,数学知识的不断提高,数学基础理论的不断改进,经济活动不断发展的趋势,数学知识和基础数学理论的广泛应用,已经逐渐潜移默化地改变了每个人的生活习惯和主题活动的逻辑思维。因此,数学与经济个体行为之间的关系是密切相关的。

(二)数学课是金融研究的重要途径经济学是一门与科研资源分配和社会经济发展有关的课程。当前的经济发展管理计划中广泛使用数学思维训练,在将基础数学课程和基础经济发展理论转变为经济发展实践方面起着主导作用。最重要的方面之一是数学课明确提出了重要的金融研究方法。数学课作为纵横比定性分析、逻辑思维、准确性和封闭式的重要语言,在描述、分析、显示信息以及显示信息经济发展、经济关系和价值规律的整个过程中得到了充分利用。它有效地提高了经济发展中专业技能积累的速度和效率,并扩大了经济发展信息和经济发展学术研讨会,突出了数学的独特作用和风格,为经济研究的发展做出了杰出贡献。

二、经济预测与决策在经济活动中的重要作用。

经济预测和经济管理决策,是经济科学研究的关键步骤和重要内容。它在经济状况的分析和通过科学研究掌握经济规律、预警信息和预测经济状况以及对生产和经营主题活动的具体指导方面起着关键性的作用。具体来说,就是经济发展预测和分析以及经济发展管理决策在经济活动中起着关键作用。

(一)经济预测的重要作用无论是促进商业实体的管理方式改善还是促进社会经济发展,都离不开准确的经济发展趋势分析和社会经济发展预测分析研究的科学研究分析,从而有助于对社会经济发展主体进行科学研究。总体而言,经济发展预测分析是指基于对某些社会现象的统计数据信息和经济信息的调查,以及对个体行为的客观经济发展进行准确计算和科学研究的基本理论方法,经济预测叙述和分析了经济发展全过程与经济发展因素之间的过渡特征和发展趋势。此外,全面区分了一系列个人行为,例如:预测分析以及对未来社会和经济发展趋势和概率的预测。在当代经济环境分析和金融研究中,经济发展预测分析起着越来越重要的作用。它对于解决经济发展市场前景的变化,减少经济发展中个人行为的风险,减少对中国实体经济的可能损害具有重要的现实意义和使用价值。

(二)经济决策的重要作用经济活动通过促进经济发展得以实现经济利益并且使得利益能够最大化,因此,必须在经济活动中做出努力,以改善经济发展管理决策。经济发展管理决策是指调整和促进综合经济发展的个人行为,对经济发展机构和产业结构主体的经济发展个体行为的分析和辨别是应用科学研究和客观分析的结果,并且是区分相对于经济发展总体目标和主导管理决策个人行为的基本方法经济指标和经济信息。经济发展管理决策在社会经济发展中具有十分关键的作用和十分重要的影响,这是决定市场竞争在经济发展中的成败和经济回报水平的主要条件。因此,经济决策在经济活动中的地位越来越重要,也越来越被重视。

三、数学在经济预测与决策中的应用。

数学课与经济发展之间有着天然的联系。如今,当人们越来越重视定量分析和合理性时,在经济发展实践活动和经济发展理论基础研究中改进数学思维训练和数学基础理论的应用已成为共识。为了应对日益复杂的全球经济环境,并继续改进数学在经济发展预测分析和管理决策中的应用,它越来越受到各界人士的关注。

(一)数学在经济预测与决策中的应用范围不断扩大如今,全球数学课程的发展趋势已经达到一个非常高的水平。数学应用与服务领域的总体发展趋势以及数学分支机构管理方法的日益多样化和完善,使其在社会经济发展、战略决策分析等方面的表现更加突出。经济研究的数学过程已经成为经济研究的一个重要特征。随着数学基础理论的发展趋势和金融研究的深入发展,数学在经济发展预测分析和管理决策中的应用逐渐从工具性发展趋势向逻辑有用应用转变。此外,当代信息技术的发展为每个人提供了一个更强的标准,使人们能够更方便地运用数学基本理论和方法来进行经济发展预测分析和管理决策。因为对现代网络技术的应用,可以更轻松地进行经济指标的数学分析,可以使用公式更方便快捷地分析和预测社会现象,并且可以更轻松地使用数学分析模型来构建投资模型,然后可以理性地处理社会现象和社会经济学科学研究中的各种各样的复杂问题。因此,在当今社会的发展中,数学知识已经被用于更加广泛的经济发展预测分析和管理决策中,并且应用频率更高,还有基本理论的使用价值以及社会经济发展的使用价值的现实意义也都呈现出了逐步增长的发展趋势。

(二)数学在经济预测中的应用分析社会经济发展预测分析是基于数学的基本理论和客观性,对未来经济形势进行科学研究预测分析。它通常接近定性研究和定性分析的中间,并且不能与普遍的应用思维分开。其中,社会经济发展的分布与融合是分析社会经济发展趋势的关键一步。发展要素项目投资实体模型本质上是一项科学研究,它将社会问题的科学研究转化为社会经济发展要素的替代和组成,然后以数学课程基础知识中自变量、变量、基本参数和化学方程式为基础,进行分析和科学研究讨论。例如离散数学就是一种重要的特殊工具,它可以解决许多复杂和多样化的数学方程。离散数学经常被引入社会经济学的研究中,基于多个变量的特征和许多未知的基本参数,房地产价格变化趋势无法用于成本预算。

(三)数学在经济决策中的应用分析科学研究的社会经济发展和战略决策尤为重要,但不能以科学研究方法为基础。当今的经济运行分析和科学研究创造了许多不同类型的经济发展管理决策方法,包括明确的管理决策方法(例如损益分析和线性规划问题),以及社会管理决策方法和效果。战略决策法律法规和其他可变战略决策方法还包括基于风险的战略决策方法,例如边际分析战略决策方法和估计利润表战略决策方法。无论选择哪种社会经济发展战略方法,都必须基于客观经济发展和发展状况中所包括和包括的社会经济发展因素,并且有许多数学原理适用于到达站。根据具体情况,有必要建立一种适当、科学的数学分析方法描述和反映不同的社会经济发展要素的分布和构成。另外,博弈论作为现代数学的重要基础知识,不仅涉及数学的外部效应产业链,而且还超越了数学的宏观经济政策产业链,与社会经济决策密切相关。从外部性的角度来看,与社会和经济发展战略决策密切相关的产品质量问题、产品保质期问题、佣金问题、商业保险选择问题、潜在的市场需求问题以及市场销售谈判问题相互关联。它已应用于许多相关的专业技能和博弈论思维逻辑。从微观经济学的角度,无论是对现代企业整个产业链组织理论的科学研究还是对社会经济学的讨论,都可以从博弈论的角度进行分析和表达。

四、结语。

只有科学研究成功地应用了数学,所有科学研究才能真正卓有成效。数学是现代科学和技术的一门重要课程,这是社会经济学科学研究的基础课程。思维训练和数学工作能力有利于社会经济学学者提高科学研究水平,掌握价值规律,指导个人经济发展。追求完美、精确和客观是经济发展预测分析和管理决策的关键特征。在进行社会经济分析科学研究时,每个人都只站在数学的“肩膀”上,塑造科学研究的思想训练,充分利用数学课,这是一种合理的分析科学研究工具和科学研究方法。只有通过科学研究,我们才能合理地理解和掌握社会经济发展的规律,才能更好地进行经济发展预测分析和经济发展管理决策。如今,越来越多的经济学家将传统数学课程的基础理论和数学课程的新科学研究成果应用到经济发展预测分析和管理决策科学研究中,并获得了许多新的社会经济科学研究成果,这些成果得到了越来越多的证实。因此,在当代教育的发展趋势中,必须重视数学学科的基础建设和学生数学思维逻辑的塑造,大量的高级数学人才进行经济发展预测分析和管理决策,促进我国当代经济发展。

参考文献:

将本文的word文档下载到电脑,方便收藏和打印。

大学数学论文的范文通用篇九

摘要:新课标下的数学练习设计应突出其现实性、发展性和活动性,关注学生在思维能力、情感态度与价值观等方面的进步与发展,达到培养学生的创新精神和实践能力的目的。

关键词:数学练习;设计。

作为新课标下的数学练习设计,应如何体现它的效果,突出现实性、发展性和活动性呢?

1、提倡开放课堂,倡导练习的“百家争鸣”

课堂练习是使学生熟练地掌握知识,培养思维品质的具体措施,练习要刻意减少指令性的成分,增加练习的开放性,以使学生的思路更广阔、更灵活。其特征是一般没有现成的算法与确定的答案,要求解题者去假设、猜想、验证,并要求解题者善于联想、敢于创新,具有灵活运用知识的能力,能使思维辐射到与问题相关的一些知识点上。因其特点,开放性练习情节更富有挑战意味,令课堂教学更加生动活泼,更能激起儿童潜在的好奇心和好胜心,鉴于此,它的设计一要适合学生的思维特点,二要能具有让不同水平、不同方法、不同个性的学生都有机会表达自己的数学思想,获得成功的体验,其根本目的是要为学生的思维发展服务,促进学生从模仿走向创新。

2、学科整合,不拘一格,步入练习的“你中有我”

数学是整合性的而非分科的;是具体的、原汁原味的,而非抽象的、分类的;是广域的而非限定的。加强数学练习设计的整合性,不能仅仅拘泥于一种方式,而要从立体的、多维度的角度把握数学内容与内容、各学科之间的关联,注重知识的重组和综合运用,真正使数学练习成为学生益智、长知,陶冶情操的有趣活动。

3、提倡自主,突出练习的“民主自由”

教育的核心是让学生学会学习、学会做人,教师作为练习设计的策划者,必须尊重学生,充分发挥学生的主体作用,让学生做练习的主人,做自己的“练习”。实践证明,并不是每一个学生对于相同的练习都能承受,因此,练习设计须考虑不同层次学生的学习需求,尊重差异,尽可能地设计不同层次、不同功能的练习,供学生自主选择训练,引导学生积极思维,掌握知识,形成技能、技巧,打破以往按统一模式塑造学生的做法,关注每一个学生的特殊性,承认差异,善待差异,使每一个学生都能得到充分的发展,促进每一位学生通过自己的努力品尝到成功的喜悦。

4、加强实践,跳出练习的“纸上谈兵”

学习数学的重要目的在于用数学知识去解决日常生活、学习、工作中的实际问题,学习生活中的数学。数学教学如果脱离实际,那数学学习就成了“无本之木,无源之水”,更谈不上学生有意义地学习数学和获得有意义的数学知识的目的。

如在学习圆柱的侧面积时,我布置学生去观察学校内纪念亭的六根柱子,看清涂漆的是圆柱的哪一面;学习《统计》后让学生统计学校门前的公路上车辆通行的情况,同时渗透安全教育;学习圆的周长时,可以组织学生去量一量篮球场中的争球圈一周的长度,从中感觉圆周长的概念……这样的练习设计,引导学生从小课堂走向大社会,给学生以更广阔的学习数学的空间,学生学到的将不仅仅是数学知识本身,更重要的是观察、分析、合作、交流、创新、实践等综合素质得到了培养和训练。

总之,新课标体现学生学习的主体地位,作为教师要给学生一个空间,让他们自己往前走;给学生一个条件,让他们自己去锻炼;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个机遇,让他们自己去抓住;给学生一个权利,让他们自己去选择;给学生一个题目,让他们自己去创造。新课标下数学练习的设计,应是集生活内容、思想方法和语言文字于一体,反映现代技术、现代文明和现代教育观的数学教学活动的内容之一,关注的是学生在思维能力、情感态度与价值观等方面的进步和发展,达到培养学生的创新精神和实践能力的目的。

大学数学论文的范文通用篇十

摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。

为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。

本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。

关键词:高等数学;分层教学;因材施教。

一、分层教学实施的必要性。

高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。

因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。

然而,高等学校扩大招生后,我国的高等教育已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。

而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、爱好及发展方向各不相同。

而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。

这种统一的教学模式严重阻碍了高等数学教学质量的进一步提高。

目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。

而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对教学方法、教学内容的不同需求。

因此,根据学生的数学成绩、兴趣爱好、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。

本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。

二、分层教学的理论基础。

分层教学的理论基础是美国心理学、教育学家布鲁姆。

()“掌握学习”理论。

标。”“掌握学习”理论要求教师的教学“应根据学生的实际发展水平、学习方式和个性特点来进行”。

而一般高校的生源来自全国各个省市地区,近年来的高校扩招也造成了生源质量的下降。

这就造成了学生的数学水平参差不齐,差异较大,而分层教学可以较好得体现上述思想。

分层教学法还以多元智力理论为基础,尊重学生的个性差异,重视个性发展,遵循因材施教的原则,以学生的发展作为教学的出发点和归宿,真正体现“以学生发展为中心,以社会需要为方向,以学科知识为基础”的教育改革要求,也能真正体现素质教育的精神内涵。

另外,其实在我国古代,教育家、思想家孔子就已经提出育人要“深其深,浅其浅,益其益,尊其尊”,即主张“因材施教,因人而异”。

也就是说,教师的“教”,一定要适合学生的“学”。

三、分层教学的实施。

分层教学,就是针对学生不同的学习水平和能力,以及学生自身对数学的兴趣爱好程度和要求有区别地制定学习目标,设计课程内容,创设不同的教学情境和教授方式,从而进行有针对性的因材施教,促进学生得到全面的锻炼和发展,进而实现更高效率,更好效果的教学模式。

从开始,在我校教务处的大力支持下,我们在经济类专业的高等数学教学中试行了分层教学模式,和以往的不分层相比,两年来教学效果取得了显著的提高。

具体实施方法是,对于经济类专业的两个学院,经济贸易学院和工商管理学院,我们采取不打乱院系,但是分层也分班的方式。

层次分为两层,即a层和b层。

a层是基本知识掌握、理论灵活运用、理论联系实际等方面要求较高的层次,教学计划和内容以考研和在专业领域进行深入研究为目标;b层相应要求较低,但是以打下扎实基础,使数学成为后继专业课学习的有力工具为基本原则。

同时,由于a层班级的较高要求不易把握,由具有多年教学经验的教师担任授课工作。

分层的依据有客观依据和主观依据。

客观依据是学生的'数学成绩水平,一方面参考高考成绩,另一方面,在新生入学伊始,进行一次数学“摸底”考试。

“摸底”考试的试题由教学经验丰富的教师来出,大部分是一般难度的题目,但有少数较难题,由此可看出学生的数学成绩高下。

分层的主观依据即是学生自己对数学课程的兴趣深浅程度和要求高低。

比如,有的学生虽然成绩一般,但是对数学很感兴趣,或者有考研等在本专业领域继续研究的意向,我们可以考虑将该生分a层班级听课。

反之,有的学生考试成绩虽高,但是对数学兴趣不大,只是当做一门必修基础课程来修,那么,就可以征求该生的意见,将其分在b层班级上课。

考虑到班级人数和授课效果,我们采取相当三个“自然班”的人数为一个授课班。

分层教学的根本目的是因材施教,因此,第一学期期末考试结束后,一些学生的数学成绩、对数学的兴趣态度等可能已经不再适合原来的班级教学目标,这就需要对班级进行调整,也就是说,分层教学具有一定的流动性。

调整时也遵循上述分层依据,因为调整也是再一次分层。

一方面是学生的试卷成绩,另外兼顾学生的主观意愿。

但是实践证明,波动不宜过大,以不超过5%为宜。

四、分层教学的成效与思考。

分层教学取得了一定的成效,较之08级以前不实施分层教学的学生成绩,不及格率有了较大幅度的降低。

成绩分布呈正态分布。

由此可见,分层教学符合大多数学生的愿望和要求,应当坚持和完善。

分层教学有的放矢,因材施教,可以提高学生的学习兴趣,降低因学科本身的抽象枯燥造成的负担。

使一些对数学没有信心,失去学习兴趣的学生达到了大纲的要求,较好解决了大学生数学学习两级分化太大的矛盾。

08级以后的学生对分层次教学的认可度越来越高,适应数学学习的能力和学习数学的信心也大大地增强。

实践证明,分层教学保证了面向全体学生,因材施教,做到了“优等生吃得饱,中等生吃得好,差等生吃得了”,同时,减轻了学生的课业负担,是全面提高教学质量和实施素质教育的行之有效的途径。

虽然分层教学的实施使高等数学教学各方面有了大的改进,但是还有一些问题亟待解决。

比如不同“自然班”的学生在同一个授课班上数学课,这就给课堂和作业管理造成了一定的难度,对教师和辅导员提出了新的要求。

另外,考试过后需要将学生成绩按“自然班”排名,也造成了一些麻烦。

我们的工作还仅仅是一个开始,今后将在实践中不断完善分层教学的教学方式,比如,在考核学生成绩方面,可以考虑不仅依据笔试的卷面成绩,再兼顾其它形式的考核成绩;在教学过程中,可适当借助计算机进行多媒体教学,以提高学生的学习兴趣。

参考文献:

[1]阳妮.大学数学分层教学的理性思考[j].高教论坛,2007.

[2]郑兆顺.新课程中学数学教学法的理论与实践[m].北京:国防工业出版社,2006.

[4]付海峰.在层次教学中培养学生的思维能力[j].中学数学参考,1997,(10).

大学数学论文的范文通用篇十一

摘要:

要想提高初中数学教学效率,数学教师必须要改变传统的教学策略,注重激发初中生的数学学习兴趣,改变学生对数学的畏难情绪,让学生在数学课堂真正活跃起来。探讨了如何提高初中数学教学效率,旨在为初中数学教学提供参考。

关键词:初中数学高效课堂教学效率互动。

初中数学教学既要使学生掌握丰富的数学知识和数学技能,还要培养初中生的数学素养。因此,初中数学教师要坚持“以教为主导,以生为主体”,使学生成为课堂教学的主人,改变传统“一言堂”的教学方式,激发初中生的数学学习兴趣,提高初中数学教学效率。

一、构建情境激趣,有效引入新课。

初中数学教师在日常教学中,需要根据实际教学内容,构建高效的课堂教学情境,激发初中生的数学学习兴趣,从而有效的引入新课,使初中生的数学思维更加活跃,从而促进课堂教学的有效开展。比如,讲初中数学轴对称的相关知识时,我创建了教学情境:我首先带领学生动手操作,在一张纸片上滴一滴墨水,然后将纸片对折压平,再重新打开,让学生观察两滴墨水之间的关系。初中生的学习兴趣非常浓,都踊跃的进行尝试。在学生操作之后,我总结出轴对称的概念:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。为了拓展初中生的思维,我鼓励学生想一想日常生活中常见的轴对称图形的例子。

二、运用信息技术,提高学习效率。

随着信息技术在初中校园的普及,给初中数学课带来了新的发展机遇,极大地提高了初中数学教学质量。初中数学教师要运用信息技术辅助教学,充分调动初中生的学习积极性,利用信息技术的特性,营造轻松愉悦的课堂氛围。比如,讲初中数学《勾股定理》,我利用多媒体技术给初中生欣赏拼图活动,从而体现数学思维的严谨性,发展初中生的形象思维,促进数形结合思想的形成。

然后,我在多媒体课件上给初中生进行专题的讲解和训练,巩固初中生所学的知识,引导初中生运用勾股定理知识去解决实际生活中的问题。

三、开展师生互动,注重主体地位。

一堂高效的数学课必须要有师生互动,数学教师和学生都必须全身心地投入到课堂中,这样才能够体现出素质教育和新课程改革的要求。在组织互。动活动时,数学教师要注重初中生的主体地位,优化初中生的思维习惯,鼓励初中生自主探究,为终身学习奠定基础。比如,讲初中数学《中心对称》,首先明确教学目标,要让初中生理解中心对称的概念和性质以及中心对称图形的概念,进一步培养学生的尺规作图能力。我带领初中生进行复习提问:什么叫轴对称?轴对称有什么性质?作出四边形abcd关于点o的旋转180度的图形。然后我设计了师生互动的小魔术,让初中生在实际参与过程中掌握中心对称的相关知识。数学教师拿出若干张非中心对称的扑克和一张中心对称的扑克,按牌面的多数指向整理好,请一位同学任意抽出一张扑克,把这张牌旋转180°后再插入,再请这位同学洗牌,最后展开扑克牌,数学教师马上确定这位同学抽出的扑克。学生目不转睛地盯着老师,学习兴趣非常高。通过这样的互动方式,激发了学生的求知欲,有助于学生养成勤于动手、乐于探究的好习惯。

四、优化评价策略,培养学生的创新能力。

在数学教学中,教师应该优化评价策略,针对不同的学生采取差异化的评价策略,培养初中生的创新能力。比如,在一次数学测试以后,班级中的一名学生成绩下滑较为严重,我并没有直接批评他,而是与他进行沟通,帮助他找到原因,鼓励他不要放弃。一堂数学课上,学生的参与度有多大,学生提出的问题深度和广度如何,与数学教师的课堂评价具有直接的关系,数学教师要及时进行教学反思,调整自己的教学方式,给初中生提供广阔的发展空间。

五、组织实践活动,提高学生的数学意识。

数学知识具有较强的实践性和抽象性特点,数学教师要善于组织数学实践活动,将数学知识运用于实际生活中,锻炼初中生的数学意识,培养初中生的数学素养,从而使初中生获得基本的数学活动经验。我在实际教学中,根据初中生的个性特点,选择多样化的实践活动,引发初中生的数学思考。比如,讲初中数学《圆》,初中生已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验。因此,教学时我设计实践活动,逐步培养初中生分类讨论和数形结合的数学思想。如防治“传染病”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,a、b、c为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址?通过积极引导,帮助初中生获得成功的体验,积累了丰富的活动经验。

参考文献。

[1]李丽娟.浅谈如何提高初中数学教学课堂效率[j].成功,,(05).

[2]韩从军.浅谈如何打造初中数学高效课堂[j].数学学习与研究,,(08):19―20.

大学数学论文的范文通用篇十二

摘要:通识教育是我国高等教育研究的热点问题,数学类通识课程把数学作为一种文化,从不同的视角去看数学,有利于提高工科院校学生的文化素养,避免由于只重视技能训练而带来的数学素质结构的片面化,同时也是培养学生良好思维能力、创新能力的重要载体。文章结合桂林电子科技大学开设数学文化课程的教学实践,探讨了通识课改革的方法和措施。

关键词:数学文化;通识教育;教学改革。

“通识教育”一词起源于19世纪,它是一套旨在拓展基础、强化素质的跨学科的教育体系,其目的是让学生从本科教育的基本领域里获取广泛的知识,了解不同学术领域的研究思路和研究方法,同时,借助通识教育开拓学生的眼界,使其对学科整体有所了解,培养学生将各种知识融会贯通的综合能力。自从19世纪初美国博德学院的帕卡德教授第一次把通识与大学教育联系起来,通识教育开始进入人们的视野,在20世纪,通识教育已经广泛成为欧美大学的必修科目。通识教育纳入我国本科教育体系的历史并不长,近年来,结合实现高等教育“内涵式”发展的需求,通识教育逐渐成为高等教育界关注的热点,开设通识课程的高校不断增多,课程的种类也不断增加[1]。纵览各个高校的通识教育课程,大致可以分为社会科学素养、人文素养、自然科学与技术素养、美学艺术素养、实践能力素养等五大模块,力图使学生从不同的角度来认识现象,获得知识,开拓视野,提升能力。笔者长期从事大学数学公共课的教学,认为在自然科学与技术素养类的通识课中,数学类课程无疑是一个很好的载体。以笔者所在桂林电子科技大学为例,高等数学、线性代数、概率论与数理统计是工科学生必修的三门数学基础课,其掌握程度直接影响到学生专业课的学习,以及学生的基本素质和能力[2]。在传统的数学课堂上,由于学时的限制,教师很少能够拓展课本知识,造成重结论轻过程、重理论轻应用的局面,忽略了对学生的数学思维、创新意识和创新能力的培养,因此学生在大一阶段学习完课程以后往往只会计算,不能理解数学概念的背景和应用,只有在后续专业课中用到数学才能粗略体会数学的作用,但仍对一些基本数学原理知其然而不知其所以然。为了解决上述问题,可以考虑适当开设数学通识课,作为大学数学系列课程的有益补充,让学生重新审视数学、认识数学。下面,以笔者所在桂林电子科技大学为例,探讨数学通识课程的改革思路。

一、适应形势,开设数学文化网络课程。

和高校中的其他课程相比较,通识教育更加自由,可以被各个专业的学生学习,学生可以基于兴趣爱好,自由地选择各类通识课程。传统的通识课程通常是以线下课的模式来进行的,一般是安排在晚上,教师在固定的时间内在教室进行授课,课后很少与学生进行交流。笔者所在的学校是工科院校,学生课程较多,而且不少实验课都安排在晚上,所以学校很早就加入了尔雅通识平台,利用网课的形式开设通识课程,方便学生在课余的时间修读课程。对于学习安排而言,网络授课更为自由开放:传统的课堂教育要求学生在固定的时间、固定的地点进行固定的学习安排,但是不同学生的学习习惯和学习能力是不同的,没有学会的学生没有重新学习的机会,这样的安排在某种程度上是不公平的。而网课可以把课程保存在云端,学生可以在任何时间任何地点进行学习,这样一来学生可以更为自由地安排学习时间,并且还可以通过重播反复学习,弥补学习能力不足的缺陷。桂林电子科技大学在2014年启动了校内的网络学习的平台———漓江学堂,笔者所在的教学团队于2017年在该平台上线了“数学文化观赏”课程,这是一门面向高校师生的以介绍数学为目的的通识教育网络课程,课程通过“数学文化”这个载体,以数学思想、数学概念、数学能力、数学历史等作为主要内容,通过25个视频从不同角度揭示了丰富多彩的数学文化与人类社会发展之间的共生与互动。该课程是桂林电子科技大学于2016年开始建设的24门漓江学堂课程之一,2017年9月在漓江学堂正式上线,至今已开课6个学期,累计选课人数约1600人。2020年初,“数学文化观赏”课程二期建设启动,课程视频扩充到50个,并在中国大学mooc上线开设了独立spoc课程。spoc课程作为后mooc时代的产物,采取了实体课堂与在线教育相结合的混合教学模式,融合了mooc的优点,弥补了传统教育的不足。与传统网课相比,教师更容易把控教学,使学生实现课前主动自学、课上积极互动、课下踊跃交流思考的学习模式。

二、精准定位,合理安排教学内容。

一提到数学类的通识课程,很多人想到的可能是“数学建模”“数学思维”等课程,在中国大学mooc上,也有一些主打“数学文化”的通识课,以介绍数学发展史为主,这不免让人思考:到底什么是“数学文化”,应该如何向学生推广“数学文化”?“数学文化”这一概念,最早出现在西方数学哲学的研究当中。19世纪,怀特(white)最早提出了“数学文化”的观点,接着克莱因(kline)的几部代表作,包括《古今数学思想》《西方文化中的数学》《数学:确定性的丧失》,赋予数学文化以浓重的人文色彩[3]。近年来,国内不少学者也对“数学文化”进行了研究,在中学阶段数学教材的编写中,穿插了很多诸如“数学史话”“数学美学”的内容。然而到了大学阶段,数学教材往往理论性较强,联系实际较少,学生在“数学文化”的学习方面反而出现了缺失。因此,对于大学本科生而言,数学文化课的定位是对高等数学课的知识补充,其目标是介绍数学概念的形成背景,以及数学如何与自然科学中其他学科交叉融合,促进其他学科的发展。“数学文化观赏”课程的教学内容约为12周,在中国大学mooc上线后,课程团队重新整合了课程内容,把课程分为5个模块:“数学简史”“数学社会”“数学哲学”“数学概念”和“数学人物”。“数学简史”从古代数学一直串讲到现代数学,追溯数学在内容、思想和方法上的演变、发展过程;“数学社会”模块侧重于介绍数学的应用,从多角度展现数学的实用性,例如数据挖掘、算法设计、数学建模等等;“数学哲学”部分是从哲学的层面探究数学,介绍数学研究中的常规思维和非常规思维,探讨数学中的美学;“数学概念”模块通过生动的例子介绍数学中的抽象概念,比如其中的一课“无穷之旅”,以希尔伯特旅馆为例,帮助学生理解“无穷大”的概念,理解无限与有限的辩证统一;“数学人物”则是通过介绍中外数学家们的数学成就和小故事,让学生明白成功并非一蹴而就,而是需要持久的努力和刻苦的钻研[4]。除了重新编排教学内容以外,我们还充分利用mooc的讨论区,每一章都会发布若干讨论题,鼓励学生积极参与,课程上线仅一学期,学生累积发帖数就达到了2500余条。

三、多元评价,改革课程考核方式。

传统的通识课程,通常是以撰写论文作为考核的方式,而我们的课程则采用灵活多样的考核方式。课程在校内平台上线时,设计了a、b、c三种考核等级,供学生自主选择。三个等级的满分分别为100分、90分和80分。a档考试要求学生把数学与专业相结合,制作与课程相关的微课小视频,重点考查学生查阅文献和归纳整理资料的能力,并要求学生具备一定的ppt制作水平和视频剪辑能力;b档考试要求学生撰写论文,论文的题目应结合数学文化与学生的专业知识,侧重于考察学生对课程相关问题的理解能力以及书面表达能力;c档考试为闭卷考试,要求学生在规定时间内完成简述题的作答,重在考察学生对课程内容的理解和掌握。课程上线几年来,选a档考试的人数通常会占选课人数的65%以上,说明学生对于开放性试题的接受程度更高。课程在中国大学mooc上线后,课程团队除了保留原有的a、b两档考试模式以外,还利用平台增设单元测试和随堂测试。在后续的课程建设中,我们计划增加其他考核模式,例如主观题学生互评、小组讨论与展示等,充分利用mooc平台优势,改革考试模式和评价机制,通过开放性和创造性的考核,考察学生的综合素质能力,凸显通识课作为综合素养课程的价值使命。

四、探索尝试,取得一定教学效果。

本课程自开课以来,选课人数接近1600人,已有1500余名学生完成考试,其中1400余名学生考试合格。在学生的微课作品中,不乏一些优秀作品,在征得学生的同意后,我们制作了优秀作品合集展示在课程qq群里。从课程结束后发放的调查问卷显示,大部分学生对课程的满意程度较高,85%以上的学生认为本课程对学习有帮助,84.95%的学生对课程的总体评价为满意或非常满意,88.17%的学生对教师的总体评价为满意或非常满意。从课程的难度来看,74.19%的学生认为本课程的难度适中;从课程的时长来看,73.12%的学生认为本课程的时长合适;在考核的方式和难度方面,73.12%的学生对课程的考核方式表示满意或非常满意,80.65%的学生认为考核难度适中;总体评价方面,学生对课程评价的分值为4.34分(满分为5分),对教师的评价分值为4.54分(满分为5分)。平时的教学过程也显示出学生参与教学的积极性较高,能够在讨论区积极回帖和发帖,同时学生也对课程提出了一些建议,例如希望能够更好地将数学原理与专业课程结合,把抽象的概念寓于生动有趣的问题中,甚至也有不少学生表示期待能在课程中看到一些数学前沿问题。高等教育的主要任务是培养基础理论扎实、专业知识面广、实践动手能力强、具有较强创新能力的人才,数学文化通识课程也应当从这些方面入手,努力达到学科交叉和素质教育的基本目标,注重“以学生为本”,构建立体的知识网络,从“育人”的角度出发,对数学通识课程进行全方位的改革,提高学生的数学素养和综合素养,从而让学生受益终生。

参考文献:

[2]董亚娟.通识教育与创新型人才培养———兼论通识课“经济生活中的数学”[j].人才培养与教学改革———浙江工商大学教学改革论文集,2014(1).

[3]项晶菁,李琪.高等工科院校开设数学文化通识课的实践与思考[c]//educationandeducationmanagement(eem2011v2):113-117.

[4]赵琪,张久军,姚成贵.大学数学文化课教学的实践与探索[j].辽宁大学学报(自然科学版),2016(3).

大学数学论文的范文通用篇十三

摘要:随着素质教育概念的引入,人们对学生的素质教育看的越来越重。小学数学作为一门基础学科,是素质教育教学的核心部分。随着近几年来数学教育改革的开展,数学教学的方式和思想方法都引起了广大师生的重视,数学思想方法及其导学模式作为重要的研究方向,要求老师们和同学们在素质教育中不断努力探索。

关键词:小学数学;数学思想;数学方法;学习过程;导学模式。

教育界普遍认为,数学思想和数学方法统称为数学思想方法。同时,数学思想和数学方法既有区别又有联系。简单地理解,数学方法是在解决数学问题时应用的作题方法。例如,数学学习中的列表法、作图法,公式法等,而数学思想更具有抽象意义,讲究的是做题的思维,数学思想是数学方法的进一步概括和提炼。数学思想方法的学习过程大致可以分为导入―――拓展―――实际运用这三个阶段。

一、导入学习。

对于数学思想方法的学习,首先应该注重对学生感知数学思想方法的引导,这个过程注重的应当是提出问题,调动学生的积极性,发挥学生的主观能动性,充分的参与到学习中来,在预习的过程中,让学生潜移默化的理解数学思想方法的内涵和意义。想要达到导入学习的深刻作用,必定是离不开教师的努力,教师必须做到熟悉掌握课本知识,加强学习,刻苦钻研教材,深入理解数学课本的教学目标和内涵。从而做到在数学教学中提出精炼,有意义的问题,方便学生预习和掌握重点做题思想方法,以此达到教学相长,提高学生成绩的效果。

在教授青岛版小学六年级下册《圆的面积》时,讲课之前,我先安排给了学生预习的任务,我通过提问:我们五年级的时候已经学习过了平行四边形与三角形之间的转换关系,大家都应当还记得吧,那么现在我们应该怎么办才能求出圆的面积呢?这时通过点拨,大多数的学生都会主动进行思考是不是能够把求圆的面积转化成其他的图形来计算呢?但是要转换成什么图形呢?到了讲课时间,我先请同学们说自己的想法,很多同学有说将圆的面积细分成平行四边形,也有同学说将圆的面积细分成长方形,当作到分割的足够细小的时候,也就和这两个图形十分接近了。基本可以确定学生的思路是对的,他们基本懂得运用化曲为直的思想方法。

我进一步进行引导:假如我们把圆形进行分割,当分割的足够细小的时候,所拼成的图形与长方形会十分接近,因此就把圆形的面积转化成了长方形,再进一步根据长方形和圆形的关系推导出圆面积的计算公式。通过这种启发诱导,学生很容易的就理解了极限的思想,并且学会了如何去运用它。因此,可以认识到导入的方法并不十分容易把握。同时,导入的方法学习数学思想方法又与学生们长期的数学基础和积累密不可分,这也要求学生做到打好数学学习的基础要常常温故而知新,通过这个过程让学生潜移默化的理解数学的精神和品质。

二、循环拓展学习。

循环拓展学习简而言之就是让学生对于之前学习的知识进行二次学习和深入理解,之前的导入学习让学生已经初步认识和感悟了该种思想方法,循环拓展学习的重点教学目标在于初步认识,理解学科思想方法。在教授青岛版小学三年级上册“长方形和正方形的周长”这一课,之前已经学过计算周长的方法,然后我要求计算长30米宽15米的篮球场的周长,分别列出方法,通过之前学习的方法大家列出30+30+15+15=90米,第二种方法30+15+30+15=90。同学们通过对已有知识的拓展和反复应用运用了作两次乘法再做加法的第三种方法,30×2=60米,15×2=30米,60+30=90米。

三、实际运用。

在教授青岛版四年级上册数学《两位数除以一位数(商是两位数)》这一课程时,我用ppt动画为大家创设场景课件出示“在童话镇里,住着白雪公主和七个小矮人,一天白雪公主带来28颗糖果要分给小矮人们吃,七个小矮人围着这五彩缤纷的糖果,叽叽喳喳说个不停,那么他们到底在商量着什么呢”的实际问题,让学生猜想:七个小矮人想要吃糖果,它们碰到什么问题了?学生一下子让画面吸引住了,纷纷说出自己对图意的理解,并提出了本节课要解决的问题:“28颗糖果要平均分给七个小矮人,1个小矮人分到几个呢?”通过实际问题的解决轻松引入了两位数除以一位数(商是两位数),同学们学习积极性特别高,很快就掌握了数学的精髓所在。

(一)情境设置调动学习积极性。

在教授青岛版五年级下册数学“一元一次方程”时,我先通过小学所学知识,结合学校的运动会,自编一些“运动会上的数学”题。学生通过对算术方法求解和列方程求解的比较,感受到列方程解应用题的优越性,同时也为学生学习新知识“解一元一次方程”扫清知识障碍。感受学习的连贯性,使学生循序渐进地获取知识性、整体性和实用性,从而形成较为完整的知识体系。

(二)组建学习小组启发学生思维。

创建学习小组,使学生在群体学习中,闪现思想的火花,智慧的碰撞。通过小组讨论和交流,让学得好的学生为学得慢的学生进行讲解,与学生的语言更加容易接受同时呢对于学习学得快的同学,可以在讲解的过程中也是对自己的知识加以巩固和深化,又可以使学得慢的同学尽快跟上进度。

(三)自我点评,总结归纳。

探究数学学习方法的导学模式,主要的内涵是发挥学生的主观能动性,而教师在这个环节里主要起到的是引导作用,在学习完一课时的数学之后,学生必定会存在很多的难题。在这个过程中,应该让学生将自己并没有完全明白的问题提出来进行课堂的讨论,在讨论之中进行问题的解决以加深学生的印象。这个环节实现的重点在于教师尽量为学生提供一种宽松的讨论环境,使学生有一个充分展示自己的舞台,而且还要认真地听取其他同学的观点和想法,而教师要对学生大胆发言予以鼓励和支持,并对他们展开引导和评价,主要应当做到鼓励为主,以正面评价激励同学自主学习的欲望。

在最后评的过程中,老师一定要对于学生所做的讨论和争执做出一定的总结,而且对所涉及的学生模糊的知识点进行归纳和总结,将学生的感性认识提升为理性认识,为学生建立起科学的系统的知识框架,把学生的学习效果及时进行干预和纠正,鼓励学生充分发挥主观能动性。本文结合教学实践,我认为该模式仍然有许多的挖掘潜力。希望本文可以为研究相关课题的广大师生带来借鉴意义。

您可能关注的文档