2023年分解因式心得体会范本(模板18篇)
- 上传日期:2023-11-19 11:37:01 |
- ZTFB |
- 11页
写心得体会是一个持续学习和提升的过程,通过不断总结和反思,我们可以不断发现新的进步和成长之路。那么如何写一篇有价值的心得体会呢?首先,我们应该充分回忆并记录下所经历的事情,包括所学的知识、所遇到的困难以及自己的感受和想法。其次,分析和提炼这些经历中的关键点和重要感悟,突出问题的核心和解决方法。再者,要注意运用恰当的语言表达方式,清晰地表达自己的思想和观点。最后,通过对自身心得的总结,可以进一步反思并得出一些改进的方向和建议,为自己的成长和发展做好规划。以下是小编为大家搜集的一些心得体会,希望能够为大家解决一些疑惑和困惑。
分解因式心得体会范本篇一
作为数学中的一个重要知识点,因式分解是中学数学学习过程中必不可少的一部分。在中考和高考中出现率也非常高,是决定学生数学成绩的重要因素之一。因此,在课堂教学中,老师对于因式分解的讲解是不可或缺的。在此次考试中,我学到了很多因式分解的技巧,从而也让自己对于数学的认知更加深刻。
二段:试卷展望。
从试卷内容上来看,这次考试既有练习平方差公式、求最小公倍数等基本的因式分解方法,也有让我们独立思考、总结归纳的习题,让我感受到因式分解知识的广阔性和复杂性。此外,试卷中还有一些动手能力和解题能力的训练,让我意识到,因式分解不仅仅只是死记硬背的公式和方法,而是需要平时的思考和多做练习,快速准确地解题。
三段:试卷解析。
在试卷解析中,我发现一些因式分解的小技巧非常实用且节省时间,如定义原式、拆项、分式分解以及整数分解等。而且,这些小技巧在课堂练习中老师多次强调和实战演练,让我们确认了这些技巧的重要性。同时,在试卷解析时,老师还提醒我们要注重口算能力的提高。这也让我深刻认识到在这个网络智能的时代,口算能力对于数学和生活的影响还是非常重要的。
四段:他山之石。
在回顾这次考试时,我发现一些考点与其他科目和专业的知识点有交叉,如物理中的进阶数学、面积等概念以及化学中的化学分子计算、化学平衡,甚至在工程学的某些方面也涉及到了因式分解方法的应用。这些启示我们在学习中不要仅限于某一个领域的知识,要跨学科思考和学习,从而打破学科边界,提升综合素质。
五段:结尾。
因式分解虽然是中学数学中比较难的知识点之一,但是它也是学生掌握完全必不可少的技能之一。这次的考试让我重新审视了这个知识点。它需要在平时的练习中触摸、总结、归纳并加以运用,在老师的讲解和教授下,不断提高口算能力,跨领域学习,使自己的学习成果不断增长。我会继续努力刻苦学习,在未来成为数学大师的道路上不断前行。
分解因式心得体会范本篇二
同学们要谨记:因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。那么接下来的初中数学学习方法请同学们认真记忆了。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
初中数学学习方法汇编之因式分解解题法,要求同学们必须可以灵活运用。接下来还有更多更全的初中数学学习方法等着大家来掌握哦。
初中数学解题方法之常用的公式。
下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式。
如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学解题方法之学会画图。
数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。
学会画图。
画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
初中数学解题方法之审题。
对于一道具体的习题,解题时最重要的环节是审题。
审题。
认真、仔细地审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”
所以,在实际解题时,应特别注意,审题要认真、仔细。
初中数学解题方法之增加习题的难度。
人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。
增加习题的难度。
应先易后难,逐步增加习题的难度。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的.题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。
因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
初中数学解题方法之归纳总结。
下面是对数学解题归纳总结的讲解,希望给同学们的学习很好的帮助。
要学会归纳总结。
在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
以上对数学归纳总结知识的内容讲解,希望同学们都能很好的掌握,相信同学们会学习的很好。
分解因式心得体会范本篇三
教学目标:
1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法。
3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题。
5、体验应用知识解决问题的乐趣。
教学重点:灵活运用因式分解解决问题。
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3。
教学过程:
一、创设情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾。
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)。
2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.
分解因式要注意以下几点:(1).分解的对象必须是多项式.
(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.
4、强化训练。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例题讲解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知识应用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展应用。
1.计算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
五、课堂小结:今天你对因式分解又有哪些新的认识?
分解因式心得体会范本篇四
分解因式是数学学科中重要的一部分,它是代数运算中的基础内容之一。分解因式涉及到对多项式的因式进行拆分和分解,是解决代数方程、方程组等各种问题的基础。近期在学习分解因式的过程中,我积累了一些心得体会,想通过这篇文章与大家分享,希望能对大家的学习有所帮助。
在开始学习分解因式之前,我们需要掌握一些基础原则。首先,我们需要了解因式与被分解多项式之间的关系。也就是说,分解因式的目的是将多项式拆分成较为简单的因子乘积,最终得到与原多项式等价的表达式。其次,我们需要学会分解因式的基本方法。对于一元多项式而言,我们可以使用因式分解公式,如平方差、立方差、二次方差、立方和等公式,以及分组、通分等方法来完成分解。对于多元多项式,我们可以进行公因式提取、配方法等操作来实现因式分解。
除了基础原则外,掌握一些分解因式的技巧也是提高分解因式能力的关键。首先,我们可以利用因式的特征进行分解。例如,对于二次多项式,我们可以通过判断其特征值来确定分解因式的形式。其次,我们可以尝试进行因式分解与求根联系起来。通过观察多项式与其根之间的关系,我们可以推导出分解因式的表达式。此外,熟练掌握素因子分解法也是非常重要的。根据多项式的组成特点,我们可以将其分解成素因子的乘积,从而达到简化多项式的目的。
第四段:解决实际问题的应用。
学习分解因式不仅仅是为了解题,更是为了运用到实际问题的解决中。例如,在解决约数问题、最大公约数最小公倍数问题时,我们可以利用分解因式的知识来简化计算。在解决二次方程、立方方程等代数方程时,分解因式也是化简公式、求解根的基础。在解决几何问题、物理问题时,分解因式能够帮助我们找到正确的答案。因此,掌握好分解因式的方法,能够提高我们解决实际问题的效率。
第五段:总结。
分解因式是数学学科中的重要内容,也是解决代数问题的基础。通过学习和实践,我深刻体会到了分解因式的重要性。作为一种基本的数学技能,分解因式不仅具有解决问题的能力,更能培养我们的逻辑思维能力和创造力。因此,在今后的学习中,我将继续加强对分解因式的掌握,不断提高解决实际问题的能力,为自己的数学学习打下坚实的基础。
分解因式心得体会范本篇五
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标。
(1)会推导乘法公式。
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键。
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
二、本单元教学的方法和策略:
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.。
三、课时安排:
2.1平方差公式1课时。
2.2完全平方公式2课时。
分解因式心得体会范本篇六
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用
写出结果。
(3)十字相乘法
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么
2、教学实例:学案示例
3、课堂练习:学案作业
4、课堂:
5、板书:
6、课堂作业:学案作业
7、教学反思:
分解因式心得体会范本篇七
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。
分解因式心得体会范本篇八
3、选择恰当的方法进行因式分解。
5、体验应用知识解决问题的乐趣。
灵活运用恰当的因式分解的方法,拓展练习2、3。
一、创设情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾。
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)。
2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.
分解因式要注意以下几点:(1).分解的对象必须是多项式.
(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.
4、强化训练。
教学引入。
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示。
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]。
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课。
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质。
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]。
动画演示:
场景三:矩形的性质。
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]。
动画演示:
场景四:菱形的性质。
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]。
师:请同学们回想矩形与菱形的`定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例题讲解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+。
例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知识应用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展应用。
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
五、课堂小结:今天你对因式分解又有哪些新的认识?
分解因式心得体会范本篇九
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
灵活运用平方差公式进行分解因式。
平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
分解因式心得体会范本篇十
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
分解因式心得体会范本篇十一
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
分解因式心得体会范本篇十二
用因式分解法解一元二次方程.
2.内容解析。
教材通过实际问题得到方程。
让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外是否还有更简单的方法解方程接着思考为什么用这种方法可以求出方程的解从而引出本节课的教学内容.
解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的乘积为零,是解某些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要.
基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.
1.教学目标。
(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;。
(2)学会观察方程特征,选用适当方法解决一元二次方程.
2.目标解析。
(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.
学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.
在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的方法解决一元二次方程.
本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.
1.创设情景,引出问题。
根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?
师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.
【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.
2.观察感知,理解方法。
问题二如何求出方程的解呢?
师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.
【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.
问题三如果,则有什么结论?对于你解方程有什么启发吗?
师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.
【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.
问题四上述方法是是如何将一元二次方程降为一次的?
师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.
【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.
3.例题示范,灵活运用。
例解下列方程。
(1)。
(2)。
师生活动:提问:
(1)如何求出方程(1)的解呢?说说你的方法.
(2)对比解法,说说各种解法的特点.
学生积极思考,积极回答问题,对比解法的不同.
当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.
师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?
(2)谈谈方程(2)的解法.
学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.
【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.
4.巩固练习,学以致用。
完成教材p14练习1,2.
【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.
5.小结提升,深化理解。
问题五(1)因式分解法的一般步骤是什么?
(2)请大家总结三种解法的联系与区别.
师生活动:学生积极思考,归纳因式分解法的一般步骤.总结各种解题方法的特点,体会各种方法的利弊,在交流的过程中加深对解一元二次方程方法的理解,教师对学生的发言给予鼓励和肯定,对于小结交流中的出现的问题及时进行引导纠正,帮助学生深入理解问题.
【设计意图】学生通过小结反思,深化对问题的理解,体会到配方法需要将方程进行配方降次,公式法需要将方程化为一般形式后利用求根公式求解;而因式分解法需要将一元二次方程化为两个一次项乘积为零的形式;另在还让学生体会到配方法和公式法适用于所有方程,但有时计算量比较大,因式分解法适用于一部分一元二次方程,但是三种方法都体现了降次的基本思想.
解下列方程。
1.
【设计意图】利用提取公因式法解方程.
2.
【设计意图】利用平方差公式解方程.
3.
【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.
4.
【设计意图】选用适当的方法解方程.
分解因式心得体会范本篇十三
尊敬的各位评委老师,大家好!(鞠躬)我是今天的1号考生,我说课的题目是《用因式分解法求解一元二次程》,下面开始我的说课。
为了处理好教与学的关系,突出数学课标的教学理念,在讲授过程中我既要做到精讲精练,又要放手引导学生参与尝试和讨论,展开思维活动。因此,本节课力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动地探索发现式学习。下面,我主要从教材分析、教学目标、学情分析、教法学法、教学过程和板书设计这六个方面展开我的说课。
教材是进行教学评判的依据,是学生获取知识的重要来源,所以,对教材的分析尤为重要。《用因式分解法求解一元二次方程》选自北师大版九年级上册第二章第四节,本节课的主要内容是了解因式分解法的解题步骤,会用因式分解法解一元二次方程,在此之前学生已经学习了整式乘法以及因式分解,为本节课学习解一元二次方程做了铺垫,也为以后学习二次函数奠定基础。
为了与学生的认知基础相适应,更好展现知识形成和发展的过程,我确定本节课的三维教学目标如下:
一、知识与技能目标:学生能够了解因式分解法的解题步骤,会用因式分解法解一元二次方程,根据方程特征灵活选择方程的解法。
二、过程与方法目标:学生逐渐学会在具体情景中从数学的角度发现问题和提出问题,提高综合运用数学知识和方法解决实际问题的能力。
三、情感态度与价值观目标:通过小组合作积极参与教学活动,学生可以树立对数学的好奇心和求知欲,养成敢于质疑、勇于创新、合作交流的学习习惯。
基于以上对教材和教学目标的分析,本节课的教学重点是了解因式分解法的解题步骤,会用因式分解法解一元二次方程,教学难点是理解因式分解法解一元二次方程的基本思想。
为了保证教学有针对性,教师不仅要对教材进行分析,更要对学生的情况有清晰明了的掌握,这样才能做到因材施教。九年级学生以抽象逻辑思维为主,他们乐于参与课堂,更渴望得到教师的关注,有强烈的好胜心,因此我会有组织、有目的、有针对性的引导学生参与到学习活动中,帮助学生真正成为学习的主人。
数学是一门发展思维的重要学科,为了更好贯彻数学新课标的要求,我采用小组合作讨论法,并辅之以问答和讲授的教学方法。在指导学生学习方法和培养学习能力方面,我将引导学生采用自主学习和合作探究的学法。这种教学理念紧随新课改理念也反映了时代精神。
以上所有的准备都是为了课堂的完美呈现,结合学生的认知特点,我将设计如下教学过程:
导入。
精彩的导入可以激发学生的学习动机,培养学习兴趣,从而达到事半功倍的效果,因此我将采用如下方式进行导入:同学们请看大屏幕,王庄村在测量土地时,发现了一块正方形的土地和一块矩形的土地,矩形土地的宽和正方形的边长相等,矩形土地的长为80m,工作人员说:“正方形土地的面积是矩形面积的一半。”谁能帮助工作人员计算一下正方形土地的面积吗?我看到同学们脸上露出了疑惑的表情,带着这个问题进入我们今天的课堂《用因式分解法求解一元二次方程》。这样通过生活实际问题引入,可以激发学生好奇探索、主动学习的欲望。
新授。
接下来进入新授环节,此环节我设计如下活动:
我会先带领同学们根据题意列式,同学们在之前学习的基础之上,不难得出a=80a,但是对于解决这个问题略有难度,因此我会组织同学们采用小组讨论的方式,给同学们5分钟时间,鼓励同学们采用多种方法就解决问题。讨论过程中,我会走下讲台,参与同学们的讨论。讨论结束后,有的小组用公式法得到答案;有的小组用的是等式的性质,但是,考虑不全面,所以错误;还有小组是将方程转化成两个因式乘积的形式a(a-80)=0,结果正确。在此活动中引导学生共同交流,锻炼合作探究能力和思维能力。
根据上述结论,我会抛出问题:该小组的做题思路是什么?他们的思路用到我们以前学的什么知识点?组织小组继续合作讨论并进行比较归纳,经过激烈讨论之后找小组代表总结可得:基本思路是:以b代替a-80,若ab=0,则a=0或b=0。当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们可以用因式分解的方法求解。因式分解法关键是熟练掌握因式分解的知识,在此过程充分体现了学生主体,教师主导的理念,有效突破重点,增强学习兴趣。
为了学生能够进一步掌握因式分解法,我会在多媒体上出示如下方程:5x=4x,并进行演示具体解题步骤,引导学生归纳总结出因式分解法的基本步骤为:一移-----方程的右边等于0;二分-----方程的左边因式分解;三化-----方程化为两个一元一次方程;四解-----写出方程两个解。这与配方法类似,都是将一元二次方程转化成两个一元一次方程求解,这个环节可以进一步提高学生分析问题和归纳总结的能力。在对因式分解法了解之后,结合前几种方法我会在黑板上出几道题目,找学生上黑板练习,以便于学生能够更好的理解和运用因式分解法。
巩固练习是必不可少的环节,为了鼓励学生能够将所学知识更好的应用到实际生活中去,我会引导学生回顾课堂导入时的问题并进行解决,这样设计既检查了新知学习情况,也与实际联系起来,帮助学生认识到数学就在自己身边。
小结。
根据艾宾浩斯遗忘曲线规律可知,及时复习效果更好,在课堂即将结束时我将以提问的方式引导学生对本节课的重难点加以总结,使知识系统化、概括化。
作业。
最后留出本节课的作业:回想一下我们学习了哪些解一元二次方程的方法?每种方法的适用类型是什么?请以列表的方式进行对比,在这个数学活动中,学生是完全自由的学习个体。
板书是一堂课的精华部分,好的板书起到画龙点睛的作用。以下是我的板书设计:我将在黑板正上方写本节课的题目,主板书以思维导图的方式呈现,系统展示因式分解法求解一元二次方程的基本步骤:一移、二分、三化、四解。这样的板书设计简单明了、系统直观,能够帮助学生对本节课有一个更深刻的掌握。
以上是我全部的说课内容,谢谢各位评委老师!
铁树老师网络面试辅导,喜马拉雅app--主播--教师面试大杂烩。
图文搜集自网络,如有侵权请联系删除。
分解因式心得体会范本篇十四
知识点:
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:
考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。
教学过程:
多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:
(1)提公因式法。
如多项式。
其中m叫做这个多项式各项的公因式,m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法。
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根x1,x2,那么。
2、教学实例:学案示例。
3、课堂练习:学案作业。
4、课堂:
5、板书:
6、课堂作业:学案作业。
7、教学反思:
分解因式心得体会范本篇十五
作为数学教师,我最近刚评改了一套关于因式分解的试卷。这次评改经历让我绝对意识到了学生对因式分解知识点掌握的深入程度,也揭示了一些重要的教学问题。在这篇文章中,我将分享一下我的评改心得和体会。
第一段:为什么因式分解知识点如此重要?
一般来说,因式分解是基础数学知识的一部分,是数学学科中的一个非常重要的知识点。因式分解的重要性在于它是迈向高阶数学的基础,它对于学习因式分配、比例、代数表达式和解方程等高阶数学知识具有不可替代的作用。此外,因式分解也是学生通过计算和进行研究时所需的基本算法,因而在考试中显得尤其重要。
评改这次因式分解试卷时,我很快注意到了一些学生不太理解的知识点。比如说,一些学生遇到需要找出公因式的题目往往会去寻找相同的项,但如果是多项式,他们就会出现极大的困扰。此外,一些学生对于如何将多项式分解成一个平方加上一个常数的问题并不熟悉,这会让他们在试卷上受阻。这些情况揭示出了学生在因式分解方面的不足之处。
第三段:学生需要加强的因式分解技能。
对于学生而言,因式分解是一个涉及广泛领域的知识点。在评改试卷时,我们教师需要注意梳理学生已经掌握的技能和他们需要加强的技能,这有助于我们时刻关注学生的进步并调整和补充教育计划。具体而言,我们需要为学生提供更多的实例、练习材料,并跟踪他们在因式分解方面的表现,以便建立他们的自信和技能。
第四段:如何教授因式分解技能。
因式分解需要让学生通过根据其特定区分来识别和分解计算中的元素。因像素分解学生需要练习列举公因式,尝试计算非公因式的独特神工技艺,能够说是非常具有挑战性的。因此,我们需要提供各种练习和实例,复习和培养一些技巧技能以便快速有效地解决常见问题。我们需要使用多种不同的教育策略,如个人作业、小组活动、教导辅导、类似拓扑和评估,以便最大限度地激发学生的学习热情和提高他们的因式分解能力。
第五段:总结。
因式分解技能在数学学科中扮演着重要的角色。评改试卷的经验表明,学生需要不断加深对知识点的理解和掌握,这需要我们更好地教授这一技能。我们需要指导学生通过使用实例、练习、辅导教学等多种方法来提高因式分解技能。通过这些方法,我们能够培养和激励学生的学习意愿,并帮助他们在因式分解方面取得更好的成绩。
分解因式心得体会范本篇十六
“整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。
因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。
2、教学目标。
(1)会推导乘法公式。
(2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。
(3)会用提公因式法、公式法进行因式分解。
(4)了解因式分解的一般步骤。
(5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。
3、重点、难点和关键。
重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。
难点:正确运用乘法公式;正确分解因式。
关键:正确理解乘法公式和因式分解的意义。
3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.。
2.1平方差公式1课时。
2.2完全平方公式2课时。
初中优秀......
初中(通用13篇)作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!下面是小编为......
分解因式心得体会范本篇十七
作为中学数学中的一项基础知识,分解因式是我们在代数学习中经常遇到的内容。这一知识点的掌握对于我们理解和解决代数题目至关重要。通过这一学习,我深刻体会到了分解因式的重要性和方法的灵活运用。下面我将从三个方面来谈谈我在分解因式学习中的体会和心得。
首先,我认识到分解因式在数学解题中的重要性。分解因式作为数学中的一种方法,可以帮助我们发现数字和字母之间的关系,进而简化原问题或将问题转化为更易解答的形式。通过分解因式,我们可以将复杂的问题简化为更易处理的形式,从而提高解题的效率。尤其是在代数表达式和方程中,分解因式是解题的重要步骤之一。只有通过正确地分解因式,我们才能得到正确的解答。因此,掌握分解因式的方法和技巧是我们在数学学习中必不可少的。
其次,我认识到分解因式的方法和技巧需要不断的练习和应用。在分解因式的学习中,我深刻体会到了理论和实践的结合的重要性。仅仅掌握了分解因式的公式和规则是远远不够的,更需要通过不断的练习和应用来熟练掌握和灵活运用。仅凭理论的记忆是远远不够的,只有经过实践和应用,我们才能真正理解和掌握分解因式的方法并灵活地运用到解题中。而且,通过不断的练习,我们可以发现分解因式的规律和特点,形成自己的解题思路和方法,提高解题的准确性和速度。
最后,我认识到在分解因式的过程中,要注重问题的实际应用和解决能力的培养。分解因式虽然是一种基础的数学技巧,但它在实际问题中的应用是多种多样的。通过解决实际问题,我们可以发现分解因式的应用场景和方法,将抽象的数学概念和实际问题相结合,培养我们的解决问题的能力。分解因式不仅仅是一种运算方法,更是一种思维方式和逻辑思维的训练。通过运用分解因式的方法,我们可以培养我们的逻辑思维能力和解决实际问题的能力,不仅在学业中有所帮助,也对我们今后的发展十分有益。
综上所述,分解因式的学习不仅对我们数学知识的掌握和运用有着重要意义,还对我们解决问题和培养综合能力有着重要作用。我们需要通过理解和掌握分解因式的重要性、熟练掌握方法和技巧以及注重实际问题的应用来提高我们的学习成绩和解决问题的能力。分解因式在数学中的重要地位和实际应用中的意义,让我更加坚信了深入学习和运用分解因式的重要性,同时也让我对数学学习和解决问题的能力充满了信心。
分解因式心得体会范本篇十八
作为一名小学教师,数学是我最喜欢教的科目之一。因为它对学生的逻辑思维起着非常重要的作用。课堂上,我经常会讲解关于因式分解的知识,因此,最近我组织了一次因式分解试卷的考试,并对试卷进行了详细的讲评。通过这次活动,让我体会到了很多有关于因式分解的知识和教学方法的心得。
第二段:试卷成分及学生反应。
在这次考试中,我采用了选择题和填空题的形式。其中选择题主要是考察对因式分解的基本知识和运算法则的掌握情况,填空题则是考察对应用能力、思维水平和考试技巧的综合运用情况。同学们在答题过程中纷纷表示,这次考试难度适中,但是需要细心、认真地完成答题。其中,需要注意的地方是计算过程中的精度和规范性,这些都要考虑到。
在讲解重点考察的知识点的同时,我也从学生的角度出发,结合生活实例进行了解释。例如对于带补数的公式因式分解题,我用加工厂打包货物作比喻,让学生很快地理解并掌握了这个知识点。对于图形面积问题,我则通过画图的方式进行讲解。在教学过程中,学生们的响应都非常积极,并认真做好笔记。
第四段:教学方法思考。
这次考试也让我充分体会到了不同的教学方法所带来的影响。其中,启蒙式教学方法使得学生们在学习的过程中不仅感受到了快乐,而且也愿意探讨、思考问题,让他们在传统教学方法中确立自我认知,提高数学能力,装备自己,成为未来发展的栋梁。同时,我在讲解过程中也要注意到学生们的意见和建议,适当地调整教学方法,更好地促进学生的学习和提高效果。
第五段:总结。
因式分解作为数学中的一项重要知识点,如果掌握不好,会影响到很多数学整体的学习。希望我所进行的这次活动可以让学生们更好地理解和掌握这一知识点,并通过不断学习,增强自身的学习能力和解决数学问题的能力。同时,我也应该在教学过程中不断反思和发现新的问题,并不断改进和提高自己的教学方法。这样才能让我的教学更加理性,更加科学,才能让更多的学生从我的教学中得到更多的知识和启示,做到真正的“教一人,成万人”。
相关文档
您可能关注的文档
- 血液净化心得体会(精选15篇)
- 校园商业心得体会及收获 5分钟商学院商业篇心得体会(九篇)
- 矛盾原理心得体会报告 关于矛盾的感悟(9篇)
- 高校舆论心得体会怎么写(通用16篇)
- 真善美丑心得体会实用 感受认识生活中的真善美和假恶丑现象(5篇)
- 最新真善美丑心得体会总结(精选15篇)
- 社区唱歌心得体会和感想(精选16篇)
- 2023年教师读论语心得体会(优质15篇)
- 2023年社区民生心得体会(大全8篇)
- 布草心得体会 客房布草管理的心得体会(四篇)
- 学生会秘书处的职责和工作总结(专业17篇)
- 教育工作者分享故事的感悟(热门18篇)
- 学生在大学学生会秘书处的工作总结大全(15篇)
- 行政助理的自我介绍(专业19篇)
- 职业顾问的职业发展心得(精选19篇)
- 法治兴则民族兴的实用心得体会(通用15篇)
- 教师在社区团委的工作总结(模板19篇)
- 教育工作者的社区团委工作总结(优质22篇)
- 体育教练军训心得体会(优秀19篇)
- 学生军训心得体会范文(21篇)
- 青年军训第二天心得(实用18篇)
- 警察慰问春节虎年家属的慰问信(优秀18篇)
- 家属慰问春节虎年的慰问信(实用20篇)
- 公务员慰问春节虎年家属的慰问信(优质21篇)
- 植物生物学课程心得体会(专业20篇)
- 政府官员参与新冠肺炎疫情防控工作方案的重要性(汇总23篇)
- 大学生创业计划竞赛范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 编辑教学秘书的工作总结(汇总17篇)
- 学校行政人员行政工作职责大全(18篇)