数学专业导论课程心得体会和方法 数学与应用数学专业导论课心得体会(3篇)
文件格式:DOCX
时间:2022-12-31 08:06:16    小编:ZTFB
数学专业导论课程和方法 数学与应用数学专业导论课 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

数学专业导论课程心得体会和方法 数学与应用数学专业导论课心得体会(3篇)

  • 上传日期:2022-12-31 08:06:16 |
  • ZTFB |
  • 7页

在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。那么心得体会怎么写才恰当呢?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

主题数学专业导论课程心得体会和方法一

一、 第一轮复习的形式

1、重视课本,系统复习。初中数学基础包括基础知识和基本技能两方面。现在中考命题仍然以基础知识题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题式习题,是教材中题目的引伸、变形或组合,复习时应以课本为主,在复习时必须深钻教材,把书中的内容进行归纳整理,使之形成自己的知识结构。

2、夯实基础,学会思考。在应用基础知识时应做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来,尤其在解决新情景问题的过程中,应感悟出如何正确思考。

3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及的概念、公式、公理、定理等。掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用,例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。

二、第一轮复习应该注意的几个问题

1、扎扎实实地夯实基础。每年中考试题按难度比例,基础分占比例大,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

2、中考有些基础题是课本上的原题或改造,必须深钻教材,绝不脱离课本。

3、不搞题海战术,精讲精练。

4、定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反馈、矫正和强化。

5、注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学生体验成功的快乐。

三、第二轮复习 1、第二轮复习的形式

第一阶段是总复习的基础,是重点,侧重双基训练,第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。第二轮复习的时间相对集中,在一轮复习的基础上,进行拔高,适当增加难度;抓重点内容,适当练习热点题型。多年来,初中数学的“方程”、“函数”、“直线型”一直是中考重点内容。“方程思想”、“函数思想”贯穿于试卷始终。这些中考题大部分来源于课本,有的对知识性要求不同,但题型新颖,背景复杂,文字冗长,不易梳理,所以应重视这方面的学习和训练,以便熟悉、适应这类题型。

2、第二轮复习应该注意的几个问题

(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。

(2)专题的划分要合理。

(3)专题的选择要准、安排时间要合理。专题要有代表性,切忌面面俱到;专题要有针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

(4)注重解题后的反思。

四、第三轮复习

1、第三轮复习的形式

第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。

2、第三轮复习应该注意的几个问题

(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。

(2)模拟题的设计要有梯度,立足中考,又要高于中考。

(3)批阅要及时,趁热打铁。

(4)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给予讲解。

(5)选准要讲的题,要少、要精、要有很强的针对性。

主题数学专业导论课程心得体会和方法二

我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。

孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。

一、在解题的方法规律处反思

“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。

例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。

变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)

变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)

变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)

变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。

变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)

再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)

通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

二,在学生易错处反思

学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。

计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:

(1)请分别指出(—2)2,—22,—2-2,2-2的意义;

(2)请辨析下列各式:

① a2+a2=a4 ②a4÷a2=a4÷2=a2

③-a3 ·(-a)2 =(-a)3+2 =-a5

④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2

解后笔者便引导学生进行反思小结.

(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。

三、在情感体验处反思

因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。

数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。

主题数学专业导论课程心得体会和方法三

学生主要是以预习七年级第二学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常七年级学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。

七年级学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。那到底该如何预习呢?预习的步骤有哪些呢?

先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的基本框架,同时了解新课的重点和难点。

对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。

。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。

这样就不能很好的将学到的知识点与解题联系起来。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

看书、看笔记、看习题,通过看,回忆、熟悉所学内容;

列出相关的知识点,标出重点、难点,列出各知识点之间的网络关系,这相当于写出总结要点;

在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

归纳出体现所学知识的各种题型及解题方法。

根据所总结的内容编一些顺口溜;如:总结不等式组解集时,“大大取大,小小取小,大小小大中间找,大大小小找不着。”证明成比例线段时,可总结为“遇等积化等比,横看竖看定相似,不想死,别生气,等线等比来代替;遇等比化等积,想到射影与圆幂” 。

总之,七年级是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,家长督导和学生自觉学习相结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,为日后进一步进行数学学习打下良好的基础。

您可能关注的文档