2023年八年级数学教案人教版(精选19篇)
文件格式:DOCX
时间:2023-10-16 01:27:36    小编:雅蕊
数学教案人教版 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

2023年八年级数学教案人教版(精选19篇)

  • 上传日期:2023-10-16 01:27:36 |
  • 雅蕊 |
  • 14页

作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么我们该如何写一篇较为完美的教案呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

八年级数学教案人教版篇一

一、教学目标:熟练地进行分式乘除法的混合运算。

二、重点、难点

1、重点:熟练地进行分式乘除法的混合运算。

2、难点:熟练地进行分式乘除法的混合运算。

3、认知难点与突破方法:

紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。

三、例、习题的意图分析

1、 p17页例4是分式乘除法的混合运算。 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。

教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点。

2, p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题。

四、课堂引入

计算

(1) (2)

五、例题讲解

(p17)例4.计算

[分析] 是分式乘除法的混合运算。 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。

(补充)例。计算

(1)

= (先把除法统一成乘法运算)

= (判断运算的符号)

= (约分到最简分式)

(2)

= (先把除法统一成乘法运算)

= (分子、分母中的多项式分解因式)

=

=

六、随堂练习

计算

(1) (2)

(3) (4)

七、课后练习

计算

(1) (2)

(3) (4)

八、答案:

六。(1) (2) (3) (4)-y

七。 (1) (2) (3) (4)

八年级数学教案人教版篇二

(1)理解三角形的高、中线与角平分线等概念;

(2)会用工具画三角形的高、中线与角平分线;

2.教学目标解析

(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

(3)掌握三角形的高、中线与角平分线的画法.

(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

三、教学问题诊断分析

三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

八年级数学教案人教版篇三

1、知识与技能

会应用平方差公式进行因式分解,发展学生推理能力。

2、过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

3、情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键

1、重点:利用平方差公式分解因式。

2、难点:领会因式分解的解题步骤和分解因式的彻底性。

3、关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来。

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维。

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式。

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n)。

【学生活动】动笔计算出上面的两道题,并踊跃上台板演。

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律。

1、分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5)。

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n)。

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解。

平方差公式:a2-b2=(a+b)(a-b)。

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式)。

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x)。

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解。

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演。

【学生活动】分四人小组,合作探究。

解:(1)x2-9y2=(x+3y)(x-3y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)。

八年级数学教案人教版篇四

三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

2.内容解析

本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

八年级数学教案人教版篇五

1.理解分式的基本性质。

2.会用分式的基本性质将分式变形。

二、重点、难点

1.重点:理解分式的基本性质。

2.难点:灵活应用分式的基本性质将分式变形。

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、练习题的意图分析

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的`第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

八年级数学教案人教版篇六

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算。

二、重点、难点

1、重点:熟练地进行分式乘方的运算。

2、难点:熟练地进行分式乘、除、乘方的混合运算。

3、认知难点与突破方法

顺其自然地推导可得:

= = = ,即 = 。 (n为正整数)

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方。

三、例、习题的意图分析

1、 p17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判

断乘方的结果的符号,在分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。.

2、教材p17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习。同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好。

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点。

四、课堂引入

计算下列各题:

(1) = =( ) (2) = =( )

(3) = =( )

[提问]由以上计算的结果你能推出 (n为正整数)的结果吗?

五、例题讲解

(p17)例5.计算

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。

六、随堂练习

1、判断下列各式是否成立,并改正。

(1) = (2) =

(3) = (4) =

2、计算

(1) (2) (3)

(4) 5)

(6)

七、课后练习

计算

(1) (2)

(3) (4)

八、答案:

六、1. (1)不成立, = (2)不成立, =

(3)不成立, = (4)不成立, =

2、 (1) (2) (3) (4)

(5) (6)

七、(1) (2) (3) (4)

八年级数学教案人教版篇七

一、教学目的:

1.掌握菱形概念,知道菱形与平行四边形的关系.

2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.

3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

二、重点、难点

1.教学重点:菱形的性质1、2.

2.教学难点:菱形的性质及菱形知识的综合应用.

三、例题的意图分析

本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材p108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.

四、课堂引入

1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.

八年级数学教案人教版篇八

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定

1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;

矩形的对角线平分且相等。

八年级数学教案人教版篇九

1、分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2、分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;。

异分母分式相加减,先通分,变为同分母的分式,再加减。

3、整数指数幂的加减乘除法。

4、分式方程及其解法。

第二章反比例函数

1、反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用。

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1、平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差。

八年级数学教案人教版篇十

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

今天有关今天小编就为大家精心整理了一篇有关英语口语的相关内容,以便帮助大家更好的复习。

八年级数学教案人教版篇十一

1.(跨学科综合 题)若把x克食盐溶入b克水中,从其中取出m克食盐溶液,其中含纯盐________.

2.(数学与生活)李丽从家到学校的路程为s,无风时她以平均a米/秒的速度骑车,便能按时到达,当风速为b米/秒时,她若顶 风按时到校,请用代数式表示她必须提前_______出发.

3.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a天完成,若甲组单独完成需要b天,乙 组单独完 成需_______天.

八年级数学教案人教版篇十二

部门abcdefg

人数1124225

每人创得利润2052.521.51.51.2

该公司每人所创年利润的平均数是多少万元?

年龄频数

28≤x

30≤x

32≤x

34≤x

36≤x

38≤x

40≤x

3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。

答案:1.约2.95万元2.约29岁3.60.54分贝

八年级数学教案人教版篇十三

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

1、为何值时,为反比例函数?

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂教学:

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

八年级数学教案人教版篇十四

教学目标:

1.在生活实例中认识轴对称图。

2.分析轴对称图形,理解轴对称的概念。

3. 了解两个图形成轴对称性的性质,了解轴对称图形的性质。

教学重点 1、 轴对称图形的概念;2、探索轴对称的性质。

教学难点 1、能够识别轴对称图形并找出它的对称轴;

2、能运用其性质解答简单的几何问题。

教学方法 启发诱导法

教具准备 多媒体课件

教学过程

一、 情境导入

同学们,自远古以来,对称的形式被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见,对称给我们带来了美的感受!而轴对称是对称中重要的一种,今天让我们一起走进轴对称世界,探索它的秘密吧!

从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节, 1.认识生活中的轴对称图形,并能找出轴对称图形的对称轴。2.了解两个图形成轴对称,能找出它们的对称轴及对应点。3.弄清轴对称图形,两个图形成轴对称的区别与联系。

八年级数学教案人教版篇十五

一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算。

二、重点、难点

1、重点:熟练地进行分式乘方的运算。

2、难点:熟练地进行分式乘、除、乘方的混合运算。

3、认知难点与突破方法

顺其自然地推导可得:

===,即=。(n为正整数)

归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方。

三、例、习题的意图分析

1、p17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判

断乘方的结果的符号,在分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。.

2、教材p17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习。同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好。

分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点。

四、课堂引入

计算下列各题:

(1)==()(2)==()

(3)==()

[提问]由以上计算的结果你能推出(n为正整数)的结果吗?

五、例题讲解

(p17)例5.计算

[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方。第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除。

六、随堂练习

1、判断下列各式是否成立,并改正。

(1)=(2)=

(3)=(4)=

2、计算

(1)(2)(3)

(4)5)

(6)

七、课后练习

计算

(1)(2)

(3)(4)

八、答案:

六、1.(1)不成立,=(2)不成立,=

(3)不成立,=(4)不成立,=

2、(1)(2)(3)(4)

(5)(6)

七、(1)(2)(3)(4)

八年级数学教案人教版篇十六

从上学期的期末考试来看,本班无论优秀率还是合格率都有不小的退步。优秀率仅仅只有13%,而合格率也只达到40%,两极分化的现象再一次增大,与我预期的目标有较大的差距。通过调阅学生的试卷,发现学生在知识运用上很不熟练,特别是对于解答综合性习题时欠缺灵活性。

二、指导思想

坚持党的教育方针,结合《初中数学新课程标准》,根据学生实际情况,积极开展课堂教学改革,提高课堂教学效率,向45分钟要质量。一方面巩固学生的基础知识,另一方面提高学生运用知识的能力。特别是训练学生的探究思维能力,和发散式思维模式,提高学生知识运用的能力。并通过本学期的课堂教学,完成八年级下册的数学教学任务。

三、教材目标及要求:

1、二次根式的重点是二次根式的运算,难点是根式四则混算及实际应用。

4、平行四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

要求:知识技能目标:掌握二次根式的概念、性质及计算;掌握勾股定理及其逆定理;探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;学习一次函数的图像、性质与应用;会分析数据并从中获取总体信息。

过程方法目标:发展学生推理能力;建立函数建模的思维方式;理解勾股定理的意义与内涵;提高几何说理能力及统计意识。态度情感目标:丰富学生数学经验,增加逻辑推理能力,感受数学与生活的关联。班级教学目标:优秀率:15%;合格率:55%。

四、教材分析

第十六章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。

第十七章勾股定理:本章主要探索直角三角形的三边关系,学习勾股定理及勾股定理的逆定理,学会利用三边关系判断一个三角形是否为直角三角形。教学重点:勾股定理及勾股定理的逆定理的理解与应用。教学难点:探索直角三角形三边关系时,理解勾股定理及勾股定理的逆定理。

第十八章平行四边形:本章主要探究两类特殊的四边形的性质与判定,即平行四边形和梯形有关的性质与判定。教学重点:平行四边形的定义、性质和判定;特殊平行四边形(矩形、菱形、正方形)的性质与判定;梯形及特殊梯形(等腰梯形)的性质与判定。教学难点:平行四边形的性质与判定及其应用;特殊平行四边形的性质与判定及其应用;等腰梯形的性质与判定及其应用。

第十九章一次函数:本章主要学习一次函数及其三种表达方式,包括正比例函数、一次函数的概念、图象、性质和应用。学会用函数的观点认识一元一次方程、一元一次不等式及二元一次方程组。本章重点内容是正比例函数、一次函数的概念、图象和性质。教学难点是培养学生初步形成数形结合的思维模式。第二十章数据的分析:本章主要学习平均数、中位数和众数,理解它们所反映出的数据的本质。教学重点:求平均数、中位数与方差;理解平均数、中位数和众数所表达的含义;区别算术平均数与加权平均数之间的联系和区别。教学难点:求加权平均数、中位数和方差;根据平均数、加权平均数、中位数、众数、极差和方差对数据作出比较准确的描述。

五、教学措施

1、课前作好充分准备,备好教材,备好学生。精心设计探究问题,认真讲解方法概念,深入分析思维模式,做到重点突出,难点透彻。

2、加强课后总结和对学生的课后辅导。认真总结每一堂课的成败得失,深入学生了解课堂教学的实际效果,耐心辅导存在问题的学生。

3、搞好单元测试及试卷分析,针对试卷中存在的问题,及时采取行之有效的补救措施,切实解决学生数学学习中存在的困惑。

六、课时安排(略)

八年级数学教案人教版篇十七

(一)内容

加权平均数.

(二)内容解析

学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平均数,体会权的意义、作用,并进一步体会平均数是刻画一组数据集中趋势的重要的统计量,是一组数据的“重心”.

教科书设计了以招聘英文翻译为背景的实际问题,根据不同的招聘要求,各项成绩的“重要程度”不同,从而平均成绩不同,由此引入加权平均数的概念.权的重要性在于它能够反映数据的相对“重要程度”.为了更好地说明这一点,教科书设计了“思考”栏目和例1,从不同方面体现权的作用,使学生更好地理解加权平均数,体会权的意义和作用.

基于以上分析,本节课的教学重点是:对权及加权平均数统计意义的理解.

二、目标和目标解析

(一)目标

1.理解加权平均数的统计意义.

2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力.

(二)目标解析

1.理解权表示数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数.

2.面对一组数据时,能根据具体情况赋予适当的权,并根据得到的加权平均数对实际问题作出简单的判断.

三、教学问题诊断分析

加权平均数不同于简单的算术平均数,简单的算术平均数只与数据的大小有关,而加权平均数则还与该组数据的权相关,学生对权的意义和作用的理解会有困难,往往造成数据与权混淆不清,只会利用公式,而不知加权平均数的统计意义.

本节课的教学难点是:对权的意义的理解,用加权平均数分析一组数据的集中趋势.

四、教学支持条件分析

由于教学重点是对加权平均数意义的理解,可以用电子表格excell来辅助计算加权平均数,同时加深对权意义的理解.

五、教学过程设计

(一)创设情境,提出问题

通过已有的统计学方面的知识,我们知道当收集到一些数据后,通常用统计图表整理和描述这些数据,为了进一步获取信息,还需要对数据进行分析,小学时我们学习过平均数,知道它可以反映一组数据的平均水平.本节我们将在实际问题情境中,进一步探讨平均数的统计意义,并学习中位数、众数和方差等另外几个统计量,了解它们在数据分析中的作用.

师生活动:阅读章引言.

设计意图:让学生回顾统计调查的一般步骤,了解本节的大致内容,体会数据分析是统计的重要环节,而平均数等统计量在数据分析中起着重要作用.

问题1 一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:

应试者 听 说 读 写

甲 85 78 85 73

乙 73 80 82 83

如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?

师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.

设计意图:回顾小学学过的平均数的意义,为引入加权平均数作铺垫.

追问1:用小学学过的平均数解决问题2合理吗?为什么?

追问2:如何在计算平均数时体现听、说、读、写的差别?

师生活动:教师适时地追问,学生自主设计计算平均数的方法,教师收集整理学生的计算方法,并统一计算形式,讲解权的意义及加权平均数.

设计意图:追问1让学生理解问题2与问题1的有区别,问题2中的每个数据的“重要程度”不同,追问2让学生自主探究如何在计算平均数时体现的每个数据的“重要程度”不同,从而体会权的意义.

(二)抽象概括,形成概念

八年级数学教案人教版篇十八

一、指导思想:

以《数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

二、教材目标及要求:

1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。

2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。

3、勾股定理:会用勾股定理和逆定理解决实际问题。

4、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

5、数据描述

三、教学措施:

1、加强教学“六认真”,面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的`困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

2、重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。

3、改革作业结构减轻学生负担。将学生按学习能力分成不同层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上有所提高。

4、课后辅导实行流动分层。

四、教学进度

第十六章分式13课时

16、1分式2课时

16、2分式的运算6课时

16、3分式方程3课时

复习小节与检测2课时

第十七章反比例函数8课时

17、1反比例函数3课时

17、2实际问题与反比例函数4课时

复习小节与检测2课时

第十八章勾股定理8课时

18、1勾股定理3课时

18、2勾股定理的逆定理3课时

复习小节与检测3课时

第十九章四边形17课时

19、1平行四边形5课时

19、2特殊的平行四边形6课时

19、3梯形2课时

19、4重心2课时

复习小节与检测2课时

第二十章数据描述15课时

20、1数据的代表6课时

20、2数据的波动5课时

20、3数据分析2课时

复习小节与检测2课时

八年级数学教案人教版篇十九

1、理解分式的基本性质。

2、会用分式的基本性质将分式变形。

二、重点、难点

1、重点:理解分式的基本性质。

2、难点:灵活应用分式的基本性质将分式变形。

3、认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入

1、请同学们考虑:与相等吗?与相等吗?为什么?

2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。

,,,,。

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。

解:=,=,=,=,=。

六、随堂练习

1、填空:

(1)=(2)=

(3)=(4)=

2、约分:

(1)(2)(3)(4)

3、通分:

(1)和(2)和

(3)和(4)和

4、不改变分式的值,使下列分式的分子和分母都不含“-”号。

(1)(2)(3)(4)

七、课后练习

1、判断下列约分是否正确:

(1)=(2)=

(3)=0

2、通分:

(1)和(2)和

3、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。

(1)(2)

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y

2、(1)(2)(3)(4)-2(x-y)2

3、通分:

(1)=,=

(2)=,=

(3)==

(4)==

4、(1)(2)(3)(4)

您可能关注的文档