最新圆柱的体积说课点评稿(大全14篇)

  • 上传日期:2023-11-25 16:00:08 |
  • zdfb |
  • 7页

总结还可以帮助我们更好地理解和把握问题的本质,从而更有针对性地解决问题。首先,我们需要对所要总结的内容进行充分的了解和了解。以下是小编为大家准备的一些案例和经验分享,希望能为大家提供新的思路和创意。

圆柱的体积说课点评稿篇一

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力。

3、渗透转化思想,培养学生的自主探索意识。

教学重点:

教学难点:

教学过程:

一、复习。

1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)。

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)。

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)。

反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

长方体和圆柱体的底面积和体积有怎样的关系?

学生说演示过程,总结推倒公式。

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)。

圆柱的体积说课点评稿篇二

本节课的设计思考:

一、让学生在现实情境中体验和理解数学

《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流

办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识――公式)。 不足之处:

在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。

二、教师的语言非常贫乏

在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。

苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。

圆柱的体积说课点评稿篇三

1.使学生理解和掌握圆柱的体积计算公式,能运用公式计算圆柱的体积、容积,解决一些简单的实际问题。

2.渗透极限思想,发展学生的空间观念。

3、培养学生仔细计算的良好习惯。

1、圆柱体体积的计算

2、圆柱体体积公式的推导

1.解答下面各题

(1)圆的半径是2厘米。圆的面积是多少平方厘米?

(2)一个长方体,底面积是20平方米,高是2米,体积是多少?

2.导入

我们以前学过了长方体、立方体的体积的计算方法,都可以用公式v=sh进行计算,圆柱体的体积又该怎样计算呢?这节课我们一起来研究圆柱体体积的计算方法。(揭示课题)

1.公式推导

(1)自学课本,初步感知圆柱是怎样转化成长方体的,让学生去发现两柱体之间的联系。

(2)操作研讨:演示操作,讨论:拼成的长方体跟圆柱体有什么异同点?

异:长方体变成圆柱体。同:体积、底面积、高都相同。

(3)比较归纳

在自学、操作、观察、讨论的基础上得出:

圆柱体体积=圆柱底面积圆柱的高

v=sh

2.公式应用

(1)例1.读题,学生独立解答,板演、反馈,说说列式依据与应注意的问题。(单位)

类似题练习:

书本试一试和练一练

请同学板演计算的过程,并说明列式的依据.同学之间评.

(3).深入练习,书本第5题.

(4)实际应用:

测量生活中常见圆柱物体:茶叶罐、搪瓷杯,学生自由选择。量底面直径和高,并计算它的体积.

回顾学习全过程,知道求圆柱体积所需要的条件。质疑问难。

作业本一面。

圆柱的体积说课点评稿篇四

一、我在导入时,突破教材,有所创新圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

二、我教学新课时,实现人人参与,主动学习学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的`长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

圆柱的体积说课点评稿篇五

教学圆柱的体积前,我先和学生一起温习了长方体和正方体的体积公式,重点引导学生认识到长方体和正方体都可以用底面积乘高进行计算。

对于圆柱的体积的计算公式,有很多学生在课前已经看过书本了,很明确的知道了是用底面积去乘高进行计算。对于老师来说,学生已经轻而易举的知道了最终的结论,而且结论也相当的好记,在这样的情况下如何去进行新课的教学。

所以,一开始,我并没有让学生去猜测圆柱的体积计算公式,而且凭空猜测圆柱的体积公式也是无意义的。基于这样理解教材的角度出发,我按照了书上的例题直接展开教学。

出示了三个等低等高的长方体、正方体和圆柱图形,提出问题:长方体与正方体的体积相等吗?为什么?通过第一问进一步让学生认识到长方体和正方体的体积都可以用底面积乘高来计算。

提出问题:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?用什么方法可以验证?

学生通过小组讨论交流,有几种方法:溢水法,还有的是把圆柱体进行分割。

教师提示:圆可以转化成长方形进行计算面积,圆柱可以转化成长方体计算体积吗?

这时,我请学生将准备好的萝卜(近圆柱形)进行分割,拼接。将圆柱转化成了一个近似的长方体。

通过交流指出圆柱体变成了近似的长方体,形状发生了变化,但是体积并没有变化,即拼成的'近似长方体的体积等于圆柱的体积。

引导学生观察:在转化的过程中,拼成的近似长方体与圆柱体的各个量之间的关系。

通过讨论和交流,让学生充分谈谈,在转化中,哪些量发生了变化,哪些没有发生变化。

学生通过实践、探索、发现,完成将未知的知识利用知识经验转化为熟悉的知识。这样得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

文档为doc格式。

圆柱的体积说课点评稿篇六

各位领导、老师们:

大家好,今天我说课的内容是《圆柱的体积》。

《圆柱的体积》是九年义务教育人教版小学数学六年级下册第三单元的内容。本单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。《圆柱的体积》是在学生已经学过了圆的面积公式的推导过程和长方体、正方体的体积公式的基础上进行教学的,学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后续学习的前提。

根据学生已有的知识水平和认知规律,我初步拟定以下目标:

1、使学生能理解圆柱的体积公式,能够运用公式正确的计算圆柱的体积。

2、渗透转化、等积变形、极限的数学思想。

3、通过圆柱体积公式的推导过程,让学生感受探索数学奥秘的乐趣,培养学生学习数学的信心。

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。而圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,我把推导圆柱体积公式的过程定为本节课的难点。

为了扫清学生认知上的思维障碍,在实施教学过程中,我采用以下教学方法:直观演示法和知识迁移法。不仅能够清楚地展现知识的形成过程,还能提高学生灵活运用知识的能力。

本节课我采用的学法有观察法和小组合作交流法。

为了有效的突出重点、突破难点,我设计了以下教学环节。

(一)复习旧知,揭示课题。

1、上课伊始先出示一组立体图形(长方体、正方体、圆柱)。

问:你会计算那些图形的体积?提出“圆柱的体积怎样计算?”从而揭示课题:这节课我们就来探讨圆柱的体积。

(二)观察、质疑、大胆猜想。

师出示两组不同的圆柱,让学生说一说哪个圆柱大,由此引到圆柱也有体积。鼓励学生大胆猜想,并说明理由。这一环节调动了学生学习的积极性及强烈的探究欲望,学生为了验证自己的猜想是正确的,极力想办法,找出推导圆柱体积的方法。

怎样证明圆柱的大小呢?圆柱的体积可能怎样计算呢?让学生利用自己的生活经验和原有的知识自然的想到圆柱的体积的大小与底面积和高有关,从而大胆的猜想出圆柱的体积公式。

(三)演示操作,探究新知。

实践是检验真理的唯一标准,根据学生的猜想,我提出以下问题让学生思考:1、可以把长方体的体积计算公式直接移植过来吗?2、圆柱和长方体有什么联系和区别?学生思考后就会发现圆柱和长方体都有高,但底面不同,如果能把底面转化成长方形就好了。然后让学生小组合作讨论交流如何把圆柱体转化成长方体,并让学生上台操作演示是如何转化的。

同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?让他们把各自的发现在组内互相交流,在交流中探究出圆柱的体积的计算方法。为了加深学生对圆柱体积公式的理解,我又课件演示,沿着圆柱底面直径把圆柱切开,可以得到大小相等的16块,再拼在一起,可以得到一个长方体,进而可以想到把底面平均分成的次数越多平成的图形越接近于长方体。最后让学生小组内说一说圆柱体计算公式的推导过程,再指名说,根据学生的小结我板书:圆柱的体积=底面积×高。并引导学生用字母表示出来。

整个探究过程充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,引导学生完成“经历观察、实验、猜想、证明等数学活动过程”。让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法有助于突破难点,让学生感受到了成功的喜悦。

关于难点的突破,我主要从以下几个方面着手:

(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

(四)教学例6。

在掌握了圆柱体积计算的方法之后,我安排例6让学生进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(五)练习。

1.基础练习。通过练习,巩固新知识,加深对新知识的理解,

2、拓展练习。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

我的板书简洁清晰,一目了然,能够清楚的反映出本节课的知识。

总之,本节课我是本着复习旧知——发现问题——提出问题——猜想假设——实践操作——解决问题这一条线进行教学的。放手让学生自己发现问题、解决问题,充分体现了学生的主体地位,让学生体验到了成功的快乐。

我的说课到此结束,欢迎各位领导多提宝贵意见。谢谢!

圆柱的体积说课点评稿篇七

数学无处不在,身边就有许许多多的数学,数学在生活中是不可缺少的,让我们一起来寻找数学,探索数学。

某天的数学课上,学的是圆柱的体积。上课前,有一些人已经知道了圆柱的体积是底面积乘高,但是但老师追问为什么是这样算时,大家都愣住了。经过我们的`探究,我们知道了圆柱体积的推导有以下几种方法。

方法一:你们应该都知道长方体的体积是长乘宽乘高吧,长乘宽就等于底面积,所以长方体的体积是底面积乘高。然后我们把圆柱平均分成若干份,拼成一个近似的长方体,这个长方体的底面积就相当于圆柱的底面积,这个长方体的高就相当于圆柱的高,所以圆柱的的体积是底面积乘高。

方法二:用硬币,我们在脑海里把硬币想象成平面,然后把硬币叠成圆柱,硬币的一个面就相当于是它的底,把底的面积乘硬币的个数就是底面积乘高也就是体积了。

方法三:首先我们回忆以下圆面积的推导过程,就是把一个圆平均分成若干份,然后拼成一个近似的长方形。

根据观察,原来圆柱的底面积与长方体的底面积是相等的,圆柱的高与长方体的高也是相等的。因此得出圆柱的体积与长方体的体积也相等。

生活中处处有数学,只要你认真探索就会发现许多奥秘。只要你认真思考、探索就一定能发现。

圆柱的体积说课点评稿篇八

1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

掌握圆柱体积公式的推导过程。

圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

一、情境激趣导入新课

2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)

二、自主探究, 学习新知

(一)设疑

1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)

(二)猜想

1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

(三)验证

1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)

2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)

3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

5、通过上面的观察小组讨论:

(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?

(4) 你认为圆柱的体积可以怎样计算?

(生汇报交流,师根据学生讲述适时板书。)

小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。

6、同桌相互说说圆柱体积的推导过程。

7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)

8、求圆柱体积要具备什么条件?

9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的.体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)

小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)

11、练一练:列式计算求下列各圆柱体的体积。

(1)底面半径2cm,高5cm。

(2)底面直径6dm,高1m。

(3)底面周长6.28m,高4m。

三、练习巩固拓展提升

1、判断正误:

(1)等底等高的圆柱体和长方体体积相等。………………()

(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()

(3)圆柱的底面积越大,它的体积就越大。............( )

(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( )

四、全课总结自我评价

通过这节课的学习你有什么感受和收获?

圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

从本节课教学目标的达成来看,较好地体现了以下几方面:

一、创设生活情境,体现数学生活化。

《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。

二、引导学生经历知识探究的全过程。

动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。

三、注重学法指导和数学思想方法的渗透。

“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

圆柱的体积说课点评稿篇九

教学内容:

人教版《九年义务教育六年制小学数学教科书》(第十二册)第25页圆柱体积公式的推导及“做一做”以及补充习题。教材简析:

圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。教材将本课学习安排在圆柱的认识和圆柱的表面积之后。让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间概念,培养形象思维,还可以为学习圓锥体积打下坚实的基础,提高学生的知识迁移能力。基于以上认识,我在设计中突出了以下几点:

1.加强几何的实践操作,尽量让学生自己动手,亲身经历圆柱的体积转化过程,让学生的多种感观参与学习活动。在理解知识的基础上,发展学生思维。

2.加强几何习题的设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,可以根据不同的条件求圆柱的体积。尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。

3.加强空间观念的培养,提高学生形象思维及解决问题的能力。突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。

学情分析:

高年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们在学习圆的面积计算公式时已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的生成和形成。

教学目标:

1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。(突破方法:通过观察,猜想,验证等数学活动掌握圆柱体积计算公式,在解决问题中提高运用公式的能力)。

教学难点:掌握圆柱体积公式的推导过程。(突破方法:通过设疑,猜想,验证的过程,完成圆柱体积计算公式的推导)。

教法:直观教学法,先利用教具演示让学生观察比较,再让学生动手操作。

学法:探究性学习法,在实践操作过程中理解掌握圆柱体积的计算方法。

教学设想:

1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

2.教学一开始我让学生说说我们学过哪些物体的体积?这些图形有什么特征,而圆柱有什么特征?前面我们学过哪个图形利用了化曲为直的思想?引导学生明白圆柱的体积利用类似求圆的面积计算公式一样来探讨问题设疑,让学生明确学习目标。

3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

4.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

教学过程:

一、问题导入,质疑问难。

师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间?引导出概念:物体所占空间的大小为物体的体积。

师:我们今天这节课学习体积,我们就一起来探索圆柱的体积的计算方法。

二.探索新知。

1.出示光盘,这是什么图形?(圆形)。

提问:这个圆,可以知道什么?(半径、直径、周长、面积)。

2.在桌面上,在一张光盘上叠加一些光盘,发现,这些光盘形成了一个什么图形?(圆柱)。

继续叠加,提问:圆柱在变化吗?(变高了,体积变大了)追问:什么没有变?(底面积)。

猜想:圆柱的体积会和什么有关?(底面积和高)。

3、出示和(内底相等)光盘的烧杯,倒入和圆柱光盘等高的。

(1)提问:它们之间有什么关系?(体积相等)。

那么,烧杯里的水有多少呢?你有什么好办法?

(生:把烧杯里的水分别倒入长方体、正方体玻璃器皿中,计算。

长方体、正方体的体积)。

(2)你觉得圆柱的体积和什么有关系?(长方体和正方体体积有关)。

(设计意图:从生活情景入手,初略感知圆柱的体积与底面积和高有关。通过猜想,并在实验、交流中建立初步的圆柱体积与长方体和正方体体积的计算方法有关的直观感知。然后顺势提出“如何计算圆柱体的体积”这一全课的核心问题,从而引发学生的猜测、操作、交流等数学活动,为学生经历了“做数学”的过程做铺垫。)。

三、图柱转化,自主探究,验证猜想。

(2)你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?

1.小组合作交流:怎样将圆柱体转化成一个长方体呢?

2.小组代表汇报。

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)。

1

演示操作。

(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。

圆柱的体积说课点评稿篇十

《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:

1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

教学的重点和难点:

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的'方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

二、把握学情,选择教法。

(一)学情分析。

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

(二)、选择教法,实践课题。

《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

三、教学策略的选择。

现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。

四、说教法。

为了扫清学生认知上的思维障碍,在实施教学过程中,我采用以下教学方法:直观演示法和知识迁移法。不仅能够清楚地展现知识的形成过程,还能提高学生灵活运用知识的能力。

五、说学法。

本节课我采用的学法有观察法和小组合作交流法。

六、说教学过程。

为了有效的突出重点、突破难点,我设计了以下教学环节。

(一)复习旧知,揭示课题。

1、上课伊始先出示一组立体图形(长方体、正方体、圆柱)。

问:你会计算那些图形的体积?提出“圆柱的体积怎样计算?”从而揭示课题:这节课我们就来探讨圆柱的体积。

(二)观察、质疑、大胆猜想。

师出示两组不同的圆柱,让学生说一说哪个圆柱大,由此引到圆柱也有体积。鼓励学生大胆猜想,并说明理由。这一环节调动了学生学习的积极性及强烈的探究欲望,学生为了验证自己的猜想是正确的,极力想办法,找出推导圆柱体积的方法。

怎样证明圆柱的大小呢?圆柱的体积可能怎样计算呢?让学生利用自己的生活经验和原有的知识自然的想到圆柱的体积的大小与底面积和高有关,从而大胆的猜想出圆柱的体积公式。

(三)演示操作,探究新知。

实践是检验真理的唯一标准,根据学生的猜想,我提出以下问题让学生思考:1、可以把长方体的体积计算公式直接移植过来吗?2、圆柱和长方体有什么联系和区别?学生思考后就会发现圆柱和长方体都有高,但底面不同,如果能把底面转化成长方形就好了。然后让学生小组合作讨论交流如何把圆柱体转化成长方体,并让学生上台操作演示是如何转化的。

同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?让他们把各自的发现在组内互相交流,在交流中探究出圆柱的体积的计算方法。为了加深学生对圆柱体积公式的理解,我又课件演示,沿着圆柱底面直径把圆柱切开,可以得到大小相等的16块,再拼在一起,可以得到一个长方体,进而可以想到把底面平均分成的次数越多平成的图形越接近于长方体。最后让学生小组内说一说圆柱体计算公式的推导过程,再指名说,根据学生的小结我板书:圆柱的体积=底面积×高。并引导学生用字母表示出来。

整个探究过程充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,引导学生完成“经历观察、实验、猜想、证明等数学活动过程”。让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法有助于突破难点,让学生感受到了成功的喜悦。

关于难点的突破,我主要从以下几个方面着手:(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

(四)、教学例6。

在掌握了圆柱体积计算的方法之后,我安排例6让学生进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(五)、练习。

1.基础练习。通过练习,巩固新知识,加深对新知识的理解,

2、拓展练习。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

七、说板书设计。

我的板书简洁清晰,一目了然,能够清楚的反映出本节课的知识。

总之,本节课我是本着复习旧知——发现问题——提出问题——猜想假设——实践操作——解决问题这一条线进行教学的。放手让学生自己发现问题、解决问题,充分体现了学生的主体地位,让学生体验到了成功的快乐。

我的说课到此结束,欢迎各位领导多提宝贵意见。谢谢!

圆柱的体积说课点评稿篇十一

教材来源:小学六年级《数学》教科书/人民教育出版社2009版内容来源:小学六年级数学(下册)第二单元主题:圆柱的体积课时:共1课时,授课对象:六年级学生设计者:

目标确定的依据。

1、课程标准相关要求。

(1)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。

(2)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。

2、教材分析。

《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。。

3、学情分析。

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

学习目标。

1、结合具体情境和实践活动,理解圆柱体积的含义。

2、探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

评价任务。

任务1:想一想,我们当初是如何推导出圆的面积计算公式的呢?

任务2:现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?探索推导出圆柱体体积计算的公式。

任务3:能正确计算圆柱的体积,并会解决一些简单的实际问题,完成练习中的第1、2题。

教学过程。

设计者:周伟红/新密市市直第二小学。

目标确定的依据。

1、课程标准相关要求。

(1)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。

(2)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。

2、教材分析。

本节课是在学生学习了《圆柱的表面积》和《圆柱体积》基础上进行的,旨在进一步研究圆柱体的表面积和体积的区别,是学生发展空间观念的又一次飞跃。通过本课练习,让学生在解决实际问题的过程中,进一步理解和掌握圆柱的表面积和体积公式,感受所学的数学知识的应用价值。

3、学情分析。

单独计算圆柱的表面积和体积,学生基本上都没问题,只是计算上的错误。但是如果解决圆柱的实际问题,有一部分学生不知道到底是求圆柱哪几个面的面积,不能正确运用公式解决实际问题。

学习目标。

1、进一步熟练求圆柱体表面积和体积的方法。

2、能根据实际情况运用计算公式解决一些实际问题。

评价任务。

任务1:回答:怎样计算圆柱的表面积和体积呢任务2:求下面各圆柱的表面积体积。

任务3:能正确运用圆柱的表面积和体积,解决一些简单的实际问题。

教学过程。

圆柱的体积说课点评稿篇十二

1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2.探索并掌握圆柱体积公式,能计算圆柱的体积。

3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

教学重点。

圆柱体积计算公式的推导过程。

教学难点。

圆柱体积计算公式的灵活运用。

教具准备。

教学过程。

一、复习铺垫。

1.请同学们回忆一下什么是物体的体积。

2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?

同样的方法复习正方体。

3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?

[复习旧知,为后面推导圆柱体积计算公式做铺垫]。

二、情境导入。

师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?

生:喜欢。

师:为什么?

生:有礼物,还有生日蛋糕。

师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?

生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。

生:亮亮和爷爷的生日蛋糕都是圆柱形的。

师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的.知识来说。

生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。

师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。

三、推导、论证。

1.拿出两个不易分辨体积大小的茶叶筒。

师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?

让学生思考和交流。

2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)。

4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:

生:相同点:都可以拼成一个近似的长方体。

不同点:等分的份数越多,就起接近一个长方体。

5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?

6.学生汇报讨论结果,同时板书。

生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。

7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示v=sh。

四、实际应用。

1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)。

2.如果已知底面积和高,你们会求圆柱的体积吗?

3.学生读题,特别提示统一单位。学生自主计算后全班交流。

4.反馈练习。p31页练一练1。

练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。

五、家庭作业。

测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?

圆柱的体积说课点评稿篇十三

本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。

2、本节课在教材中所处的地位和作用。

《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3、教材的重点和难点。

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

4、教学目标。

(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。

(2)初步建立空间观念和逻辑推理能力。

(3)知道知识间是可以互相转化的。

从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:

1、直观演示,操作发现。

教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2、巧设疑问,体现两“主”

发展能力的目的。

3、运用迁移,深化提高。

运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。

本节课的教学,使学生掌握一些基本的学习方法。

1、学会通过观察、比较、推理能概括出圆柱体积的推导过程。

2、学会利用旧知转化成新知,解决新问题的能力。

3、学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

对本节课的教学,我们设计了以下几个环节。

(一)复习旧知识,为引入新知识作准备。

1、求下面各圆的面积(口算),单位为厘米。

(1)半径为1厘米;

(2)直径为4厘米;

(3)周长为62.8厘米。

2、什么叫做体积?怎样计算长方体的体积?

(二)导入新课,隐射教学目标。

1、观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。

2、展示学习目标,学生认读目标。

教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。

(三)导入新课,实施教学目标。

1、设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的面积公式的推导过程,教师出示投影,帮助学生思考。

2、演示操作,揭示新知。

引导学生用字母表示出来,最后让学生看书质疑。

这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。

关于难点的突破,我们主要从以下几个方面着手:

(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。

(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。

(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。

(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

3、运用。

出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:

(1)单位要统一。

(2)求出的是体积要用体积单位。

在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

(四)巩固练习,检验目标。

2、完成练习六第2题。

通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。

3、变式练习:已知圆柱的体积、底面积,求圆柱的高。

这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

4、动手实践:让学生测量自带的圆柱体。

这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

(五)总结全课,深化教学目标。

圆柱的体积说课点评稿篇十四

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、进一步提高学生解决问题的能力。

1、理解圆柱体积公式的推导过程。

2、能够初步地学会运用体积公式解决简单的实际问题。

3、理解圆柱体积公式的推导过程。

圆柱切割组合模具、小黑板。

一、创设情境,生成问题

1、什么是体积?( 物体所占空间的大小叫做物体的体积。)

2、长方体的体积该怎样计算?归纳到底面积乘高上来。

3、圆的面积怎样计算?

二、探索交流,解决问题

(启发学生思考。)

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。

3、思考:

(1)圆柱切开后可以拼成一个什么形体?(长方体)

(2)通过实验你发现了什么?

小组讨论:实验前后,什么变了?什么没变?

讨论后,整理出来,再进行汇报。

(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方

体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)

4、推导圆柱体积公式

小组讨论:怎样计算圆柱的体积?

学生汇报讨论结果。

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

师:圆柱的体积怎样计算?用字母公式,怎样表示?

板书: v=sh

5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?

三、巩固应用练习。

1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,

这个水桶的容积是多少升?

说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

先求底面半径再求底面积,最后求体积。

已知底面周长对解决问题有什么帮助吗?必须先求出什么? 四:课堂小结:

通过这节课你学会了哪些知识,有什么收获?五:课后作业:

教材第9页,练一练第1、3、4、题

您可能关注的文档