七年级上册数学人教版教案(精选11篇)

  • 上传日期:2023-11-24 15:46:52 |
  • zdfb |
  • 8页

教案是指导教学活动的实施、管理和评价的有力工具。在教案中要注意教学过程的连贯性和递进性,引导学生逐步理解和掌握知识。这些教案范文涵盖了各学科和年级的教学内容,希望对大家有所帮助。

七年级上册数学人教版教案篇一

1知识与技能:

使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

2过程与方法:

通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

3情感态度与价值观:

让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

教学重难点。

1教学重点:

掌握用整十数除的口算方法。

2教学难点:

理解用整十数除的口算算理。

教学工具。

多媒体设备。

教学过程。

1复习引入。

口算。

20×3=7×50=6×3=。

20×5=4×9=8×60=。

24÷6=8÷2=12÷3=。

42÷6=90÷3=3000÷5=。

2新知探究。

1.教学例1。

有80面彩旗,每班分20面,可以分给几个班?

(1)提出问题,寻找解决问题的方法。

师:从中你能获取什么数学信息?

师:怎样解决这个问题?

(2)列式80÷20。

(3)学生独立探索口算的方法。

师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

学生汇报:

预设学生可能会有以下两种口算方法:

a.因为20×4=80,所以80÷20=4这是想乘算除。

b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。

为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。

这样我们就把除数是整十数的转化为我们已经学过的表内除法。

(4)师小结:

同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

把你喜欢的方法说给同桌听。

(5)检查正误。

师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。

(6)用刚学会的方法再次口算,并与同桌交流你的想法。

40÷2020÷1060÷3090÷30。

(7)探究估算的方法。

出示:83÷20≈80÷19≈。

师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

师:谁想把你的方法跟大家说一说。

预设:83接近于80,80除以20等于4,所以83除以20约等于4。

19接近于20,80除以20等于4,所以80除以19约等于4。

2.教学例2。

(1)创设情境引出问题。

师:谁会解决这个问题?

150÷50。

(2)小组讨论口算方法。

(3)你是怎么这样快就算出的呢?

a.因为15÷5=3,所以150÷50=3。

b.因为3个50是150,所以150÷50=3。

这一题跟刚才分彩旗的口算方法有不同吗?

都是运用想乘算除和表内除法这两种方法来口算的。

师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

口算练习:150÷30240÷80300÷50540÷90。

3.估算。

(1)探计估算的方法。

师:你能知道题目要求我们做什么吗?

你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

(2)谁想把你的方法跟大家说一说。

(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?

3巩固提升。

1.独立口算。

观察每道题,怎样很快说出下面除法算式的商?

如果估算的话把谁估成多少。

2.算一算、说一说。

(1)除数不变,被除数乘几,商也乘几。

(2)被除数不变,除数乘几,商反而除以几。

3.解决问题。

(1)一共要寄240本书,每包40本。要捆多少包?

你能找到什么条件、问题。你会解决吗?

240÷40=6(包)。

答:要捆6包。

(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

出示条件:一共有120个小故事,每天看1个故事。

问题:看完这本书大约需要几个月?

问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

120÷30=4(个)。

答:看完这本书大约需要4个月。

课后小结。

这节课你有什么收获?还有什么问题?

本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

板书。

口算除法。

有80面彩旗,每班分20面,可以分给几个班?

80÷20=。

文档为doc格式。

七年级上册数学人教版教案篇二

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型。

观察、讨论.让学生共同体会“点动成线、线动成面、面动成体。

让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)。

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

2、阅读教科书第119页的实验与探究,并思考有关问题。

七年级上册数学人教版教案篇三

几何图形大小:长度、面积、体积等。

位置:相交、垂直、平行等。

2几何体也简称体。包围着体的是面。

3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。

4平面图形:在一个平面内的图形就是平面图形。

5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;。

6点线面体:是组成几何图形的基本元素。

7直线、射线、线段。

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

经过两点有一条直线,并且只有一条直线。两点确定一条直线。

8角。

9角的比较与运算。

角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。

补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

性质:等角(同角)的补角相等。等角(同角)的余角相等。

七年级上册数学人教版教案篇四

掌握多种数学解题方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

逐步形成“以我为主”的学习模式。

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

七年级上册数学人教版教案篇五

1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

重点、难点。

重点:探索并理解平移的性质.

难点:对平移的认识和性质的探索.

教学过程。

一、引入新课。

1.教师打开幻灯机,投放课本图5.4-1的图案.

2.学生观察这些图案、思考并回答问题.

(1)它们有什么共同的特点?

(2)能否根据其中的一部分绘制出整个图案?

3.师生交流.

(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形,四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.

七年级上册数学人教版教案篇六

1、大于0的数叫做正数(positivenumber)。

2、在正数前面加上负号“-”的数叫做负数(negativenumber)。

3、整数和分数统称为有理数(rationalnumber)。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则。

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则。

减去一个数,等于加上这个数的相反数。

14、有理数乘法法则。

两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。

15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

19、有理数除法法则。

除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)。

22、根据有理数的乘法法则可以得出。

负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。

23、做有理数混合运算时,应注意以下运算顺序:

(1)先乘方,再乘除,最后加减;。

(2)同级运算,从左到右进行;。

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。

25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。

26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)。

短时间提高数学成绩的方法。

1、查查在知识方面还能做那些努力。关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。

2、一定要对自己、对未来充满信心,心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道初中数学题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。

3、看完书后,把课本放起来,做习题,通过做习题来再一次检查自己哪些地方做的不够好,如果碰到不会的地方,可以再看课本,这样以来,相信会给你留下深刻的印象。

数学学习方法。

1、基础很重要。

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。

2、错题本很重要。

在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3、做题要多反思。

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4、把数学知识形成体系。

数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。

七年级上册数学人教版教案篇七

(1)能用代数式表示实际问题中的数量关系.

(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.

讲授法、谈话法、讨论法。

【教学重点】。

单项式的有关概念。

【教学难点】。

负系数的确定以及准确确定一个单项式的次数。

【课前准备】。

教师准备教学用课件。

【教学过程】。

一、新课引入。

教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:

1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:

(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

分析:(1)根据速度、时间和路程之间的关系:路程=速度×时间.列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米).

(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米).

(3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米.

思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式.

上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.

kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题.

用含有字母的式子填空,看看列出的式子有什么特点.

(1)边长为a的正方体的表面积为______,体积为_______.

(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5倍圆珠笔的单价是_______元.

(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.

(4)数n的相反数是_______.

教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流.

上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.

观察上面各式中运算有什么共同特点?

上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.

像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a,,都是单项式,而,1+x都不是单项.

单项式中的数字因数叫做这个单项式的系数,例如:6a2的系数是6,a3的系数是1,-n的系数是-1,-的系数是-.

单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式的系数是1或-1时通常省略不写.

一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.

七年级上册数学人教版教案篇八

一、指导思想:

人教版七年级数学上册教学计划,本班学生刚刚完成小学六年的学习,升入初一,也就是我们现在所说的七年级。通过调阅小六毕业会考成绩册和试卷,发现本班学生的数学成绩不甚理想。从学生作答来看,基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。总体上来看,低分很多,两极分化较为严重。

二、情况分析:

学生情况分析:

全面贯彻党的十七大教育方针,以七年能数学教学大纲为标准,坚决完成《初中数学新课程标准》提出的各项基本教学目标。制定人教版七年级数学上册教学计划,根据学生的实际情况,从生活入手,结合教材内容,精心设计教学方案。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级上册数学教学任务。

三、教学目标。

人教版七年级数学上册教学计划知识与技能目标:认识有理数和代数式,掌握有理数的各种性质和运算法则,初步学会使用代数式探究数量之间的关系。认识基本几何图形,掌握基本基本作图能力和的技巧。过程与方法目标:学会抽取实际问题中的数学信息,发展几何思维模式。培养学生的观察和思维能力,尤其是自主探索的能力。情感与态度目标:培养学生学习数学的兴趣,认识数学源自生活实践,最终回归生活。班级教学目标:优秀率:15%,合格率80%。

四、教材分析。

第一章、有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

第二章、整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。

第三章、一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

第四章、图形认识初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。

五、教学措施。

1、人教版七年级数学上册教学计划,认真研读新课程标准,潜心钻研教材,根据新课程标准,结合学生实际情况,进行针对性的备课,精心设置课堂教学内容和模式。上好每一堂课,阅好每一份试卷,搞好每一节辅导,组织好每一次测验。

2、开展丰富多彩的课外活动,课外调查,向学生介绍数学家、数学史、数学趣题,喻教于乐,激发学生的学习兴趣,挖掘学生的潜能,培养数学特长生。

3、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐赶上。

七年级上册数学人教版教案篇九

1、生物圈中的绿色植物类群有:藻类植物、苔藓植物、蕨类植物、种子植物,其中前三种植物生长到一定的时期会产生一种叫做孢子的生殖细胞。因为通过孢子进行繁殖,所以又称为孢子植物(没有种子植物)。

2、藻类植物大多数生活在水中(如淡水:水绵,衣藻海水:紫菜、海带)。

(1)形态结构:没有根、茎、叶的分化。

(2)营养方式:藻类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。

(3)繁殖方式:用孢子进行繁殖。

3、藻类植物在生物圈中作用:

(1)生物圈中氧气的重要来源。

(2)水生生物的食物来源。(如鱼类饵料)。

(3)供食用。(如海带紫菜)。

(4)药用。

4、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。

(1)形态结构:一般都很矮小,通常具有类似茎和叶的分化,但是茎中没有导管,叶中也没有叶脉,根非常简单,称为假根(只起固定植物体作用)。

(2)营养方式:苔藓植物细胞里都含有叶绿素,能进行光合作用。

(3)繁殖方式:用孢子(生殖细胞)进行繁殖。苔藓植物是监测空气污染程度的指示植物。

5、蕨类植物多数生活在阴湿的环境中(如里白、贯众、满江红)。

(1)形态结构:有根、茎、叶的分化,在这些器官中有专门运输物质的通道——输导组织。

(2)营养方式:蕨类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。

(3)繁殖方式:用孢子(生殖细胞)进行繁殖。

蕨类植物与人类的关系及其在生物圈中的作用:

(1)可供食用,如蕨菜。

(2)可供药用,如卷柏、贯众等。

(3)作为绿肥和饲料,如满江红。

(4)煤的来源。

6、种子植物的分类:根据子叶数目分为:

(1)双子叶植物:胚里具有两片子叶的植物(叶脉网状),营养都储存在子叶中。如蚕豆、大豆、花生。

(2)单子叶植物:胚里具有一片子叶的植物(叶脉弧形),营养大部分储存在胚乳中。如水稻、小麦、高粱。

7、种子的结构:

(1)种皮:保护作用。

(2)胚(包含胚芽、胚轴、胚根、子叶)是新植物的幼体,将来能发育成一个植物体。

(3)只有单子叶植物有胚乳。子叶、胚乳中储藏的营养物质是胚发育成幼苗时养料的来源。

8、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。

10、被子植物成为地球上分布最广泛的植物原因:被子植物一般都具有非常发达的输导组织,从而保证了体内水分和营养物质高效率地运输;它们一般都能开花和结果,所结的果实能够保护里面的种子,不少果实还能帮助种子传播。

生物实验题解题技巧。

深刻领会生物教材实验的设计思想。做好探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则。

掌握生物实验方法和实验步骤,深入分析实验条件、过程、现象或结果的科学性、正确性、严谨性和可变性,能够描述教材中经典实验的原理、目的、方法步骤、现象与结果预测及结论,为实验设计提供科学的实验依据,搭建基本框架。

生物的学习方法和技巧。

掌握基本知识要点。

与学习其它理科一样,生物学的知识也要在理解的基础上进行记忆,但是初中阶段的生物学还有着与其它学科不一样的特点:面对生物学,同学们要思考的对象是陌生的细胞、组织、各种有机物、无机物以及他们之间奇特的逻辑关系。

因此只有在记住了这些名词、术语之后才有可能理解生物学的逻辑规律,既所谓“先记忆,后理解”。在记住了基本的名词、术语和概念之后,把主要精力放在学习生物学规律上。这时要着重理解生物体各种结构、群体之间的联系(因为生物个体或群体都是内部相互联系,相互统一的整体),也就是注意知识体系中纵向和横向两个方面的线索。

用生物学的基本观点统领生物学的学习。

树立正确的生物学观点,可以更迅速更准确地学习生物学知识。所以在生物学学习中,要注意树立以下生物学观点:

1.生命物质性观点生物体由物质组成,一切生命活动都有其物质基础。

2.结构与功能相统一的观点包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。

3.生物的整体性观点系统论有一个重要的思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水平、组织水平、器官水平,还是个体水平,甚至包括种群水平和群落水平,都体现出整体性的特点。

4.生命活动对立统一的观点生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。

5.生物进化的观点生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。

6.生态学观点基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。

系统化和具体化的方法。

系统化就是把各种有关知识纳入一定顺序或体系的思维方法。系统化不单纯是知识的分门别类,而且是把知识加以系统整理,使其构成一个比较完整的体系。在生物学学习过程中,经常采用编写提纲、列出表解、绘制图表等方式,把学过的知识加以系统地整理。

具体化是把理论知识用于具体、个别场合的思维方法。在生物学学习中,适用具体化的方式有两种:一是用所学知识应用于生活和生产实践,分析和解释一些生命现象;二是用一些生活中的具体事例来说明生物学理论知识。

七年级上册数学人教版教案篇十

(4)设n是一个数,则它的相反数是________.

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。

2.请学生说出所列代数式的意义。

(设计意图:让学生会用单项式表示现实生活中的数量关系,进一步感悟用字母表示数的简洁、方便,使用的广泛性。)。

3.请学生观察所列代数式包含哪些运算,有何共同运算特征。

(由小组讨论后,经小组推荐人员回答)。

(设计意图:教师提出问题,激发学生学习的欲望、学习的积极性、主动性,以此为载体感悟单项式的特征,为归纳单项式概念作好准备)。

二、新授内容。

1、单项式。

通过上述特征的描述,从而概括单项式的概念,:

单项式:即由_____与______的乘积组成的代数式称为单项式。

补充:单独_________或___________也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?

(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。

解:是单项式的有(填序号):________________________。

七年级上册数学人教版教案篇十一

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点。

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

教学过程。

一、复习。

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间速度=路程/时间。

二、新授。

画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。

三、巩固练习。

教科书第17页练习1、2。

四、小结。

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

四、作业。

教科书习题6.3.2,第1至5题。

您可能关注的文档