2023年八年级数学下册公开课教案(大全8篇)

  • 上传日期:2023-11-11 18:21:15 |
  • zdfb |
  • 11页

在教学过程中,教案起着重要的指导作用,可以帮助教师有条不紊地开展教学活动。那么编写一份高质量的教案应该注意哪些要点呢?首先,教案的目标要明确具体,要根据学生的实际情况和教学要求来确定。其次,教案的内容要科学合理,要与教学任务和教学目标相适应,要注重灵活性和生动性,能够激发学生的学习兴趣和主动性。此外,教案的教学方法要多样化,要根据教学内容和学生的特点选择适当的教学方法和手段,提供丰富的教学资源,激发学生的思维和创造力。此外,教案的评价要全面客观,要根据教学目标和学生的表现进行准确评价,及时发现问题并采取有效措施进行调整和改进。下面是一些关于教案编写的范例供大家参考,希望能够对您有所帮助。

八年级数学下册公开课教案篇一

在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、本学期教学内容分析

本学期教学内容共计六章。

第一章《三角形的证明》

本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。

第二章《一元一次不等式和一元一次不等式组》

本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。

第三章《图形的平移与旋转》

本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。

第四章《分解因式》

本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

第五章《分式与分式方程》

本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。

第六章《平行四边形》

本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。

四、主要措施

1、面向全体学生。

由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

2、重视改进教学方法,坚持启发式,反对注入式。

教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。

3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。

4、课后辅导实行流动分层。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的'非智力因素,弥补智力上的不足。

7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。

9、培养学生学习数学的良好习惯。

四、教学进度

第一章《三角形的证明》13课时

1.1等腰三角形 4课时

1.2直角三角形 2课时

1.3线段的垂直平分线 2课时

1.4角平分线 2课时

复习小节与检测 3课时

第二章《一元一次不等式和一元一次不等式组》 12课时

2.1 不等关系 1课时

2.2 不等式的基本性质 1课时

2.3 不等式的解集 1课时

2.4 一元一次不等式2课时

2.5 一元一次不等式与一次函数2课时

2.6 一元一次不等式组 2课时

复习小节 与检测 3课时

第三章《图形的平移与旋转》 10课时

3.1图形的平移 3课时

3.2图形的旋转 2 课时

3.3中心对称 1课时

3.4简单的图形设计 1 课时

复习小节与检测 3课时

期中考试复习2 课时

第四章《分解因式》7课时

4.1分解因式1课时

4.2提公因式法 2课时

4.3公式法 2课时

4.4重心 2课时

复习小节与检测 2课时

第五章《分式与分式方程》 11课时

5.1认识分式 2课时

5.2 分式的乘除法 1课时

5.3分式的加减法 3课时

5.4分式方程 3课时

复习小节与检测 2课时

第六章《平行四边形》 10课时

4.1平行四边形的性质 2课时

4.2特殊的平行四边形的判定 3课时

4.3三角形的中位线 1课时

4.4多边形的内角和外角和 2课时

复习小节与检测 2课时

八年级数学下册公开课教案篇二

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

算术平方根的概念。

根据算术平方根的概念正确求出非负数的算术平方根。

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

1、提出问题:(书p68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a (x0)中,规定x = .

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3) ;(4)0.0001

p69练习1、2

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

p75习题13.1活动第1、2、3题

八年级数学下册公开课教案篇三

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点。

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析。

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入。

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解。

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

解:=,=,=,=,=。

六、随堂练习。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.约分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改变分式的值,使下列分式的分子和分母都不含“-”号.

七、课后练习。

1.判断下列约分是否正确:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年级数学下册公开课教案篇四

1、了解方差的定义和计算公式。

2、理解方差概念产生和形成过程。

3、会用方差计算公式比较两组数据波动大小。

重点:掌握方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式。

(一)知识详解:

方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即。

给力小贴士:方差越小说明这组数据越稳定,波动性越低。

(二)自主检测小练习:

1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。

2、甲、乙两组数据如下:

甲组:1091181213107;

乙组:7891011121112。

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。

引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):

甲:9.10.10.13.7.13.10.8.11.8;

乙:8.13.12.11.10.12.7.7.10.10;

问:(1)哪种农作物的苗长较高(可以计算它们的平均数:=)?

(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)。

归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为。

用它们的平均数表示这组数据的方差,即用来表示。

(一)例题讲解:

金志强1013161412。

提示:先求平均数,然后使用公式计算方差。

(二)小试身手。

1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:

甲:7.8.6.8.6.5.9.10.7.4。

乙:9.5.7.8.7.6.8.6.7.7。

经过计算,两人射击环数的平均数是,但s=,s=,则ss,所以确定去参加比赛。

1、求下列数据的众数:

(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。

方差公式:

提示:方差越小,说明这组数据越集中。波动性越小。

每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。

1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)。

如果根据这些成绩选拔一人参加比赛,你会选谁呢?

必做题:教材141页练习1.2;选做题:练习册对应部分习题。

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

八年级数学下册公开课教案篇五

教学目标:

〔知识与技能〕。

1.在生活实例中认识轴对称图.

2.分析轴对称图形,理解轴对称的概念.轴对称图形的概念。

〔过程与方法〕。

2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕。

辩证唯物主义观点。

教学重点:.

理解轴对称的概念。

教学难点。

能够识别轴对称图形并找出它的对称轴.

教具准备:三角尺。

教学过程。

一.创设情境,引入新课。

1.举实例说明对称的重要性和生活充满着对称。

2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.

3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!

二.导入新课。

1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.

强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.

练习:从学生生活周围的事物中来找一些具有对称特征的例子.

3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.

4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意。

刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?

归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.

5.练习:你能找出它们的对称轴吗?分小组讨论.

思考:大家想一想,你发现了什么?

小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

三.随堂练习。

1、课本60练习1、2。

四.课时小结。

分了轴对称图形和两个图形成轴对称.

五.课后作业。

习题13.1.1、2、6题.

六.教后记。

八年级数学下册公开课教案篇六

1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题。

平行四边形的判定方法及应用。

阅读教材p44至p45。

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(5)你还能找出其他方法吗?

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2对角线互相平分的四边形是平行四边形。

平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

证明:(画出图形)。

平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

八年级数学下册公开课教案篇七

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点、

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法、

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图、

观察一下,它们有区别吗?说说你观察得到的结果、

本节课在教材中没有相应的例题,教材p152习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

八年级数学下册公开课教案篇八

教学目标:

1、知道一次函数与正比例函数的意义.

2、能写出实际问题中正比例关系与一次函数关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.

教学重点:对于一次函数与正比例函数概念的理解.

教学难点:根据具体条件求一次函数与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法。

教学过程:

1、复习旧课。

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三。

2、引入新课。

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)。

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成()的形式.一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的一次函数.特别地,当b=0时,一次函数就成为(是常数,)。

3、例题讲解。

例1、某油管因地震破裂,导致每分钟漏出原油30公升。

(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式。

(2)破裂3.5小時后,共漏出原油多少公升。

分析:y与x成正比例。

解:(1)(2)(升)。

例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的cd随身听(价值1680元)。

(1)列出小丸子的银行存款(不计利息)y与月数x的函数关系式;。

(2)多长时间以后,小丸子的银行存款才能买随身听?

分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱。

例3、已知函数是正比例函数,求的值。

分析:本题考察的是正比例函数的概念。

解:

4、小结。

由学生对本节课知识进行总结,教师板书即可.

5、布置作业。

书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论。

您可能关注的文档