最新一元一次教案十(大全11篇)
文件格式:DOCX
时间:2023-11-12 20:27:02    小编:zdfb
最新元次教案大全 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

最新一元一次教案十(大全11篇)

  • 上传日期:2023-11-12 20:27:02 |
  • zdfb |
  • 7页

教案可以帮助教师合理安排时间,掌握教学进度。教案的编写需要注意学生的学习特点及个体差异。以下是小编为大家收集的教案范例,供大家参考。

一元一次教案十篇一

本节课的教学设计中坚持以学生发展为本。通过丰富的情境,活跃的讨论,将教材中提供的几个与生活密切相关的实际问题,抽象出相等的数量关系,建立数学模型。启发学生逐层深入,多方位、多角度地思考问题,加强知识的综合运用,尊重个体差异,帮助学生在自主探索与合作交流的过程中获得数学活动经验,提高灵活解决实际问题的能力。

教学内容分析。

本节课是人民教育出版社的义务教育课程标准实验教科书《数学》七年级上第二章第四节。列一元一次方程解决生产生活中的一些实际问题,是初中阶段应用数学知识解决实际问题的开端,同时也是今后学习列其它方程或方程组解决实际问题的基础。

教学对象分析。

学生在小学学习时就已接触过有关实际问题中的盈亏问题和省钱问题,掌握了盈亏问题和省钱问题的基本关系,并会解决一些简单问题,同时,在本章前阶段的学习中学习了一元一次方程的解法及列一元一次方程解实际问题建模的思想,但由于学生的认知起点和学习能力存在差异,部分学生对于抽象数学模型可能感到困难,因此,教学时要注意学生的学习倾向,挖掘积极因素,力求不同的学生获得不同的发展。

知识与技能目标。

进一步掌握生活中实际问题的方程解法,能找出实际问题中已知数、未知数和全部的等量关系,列一元一次方程加以解决。

过程与方法目标。

主动参与数学活动,通过问题的`对比体会数学建模思想,形成良好的思维习惯。

情感、态度和价值观目标。

经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,激发应用数学的热情。

教学重点:1.体验用多种方法解决实际问题的过程。

教学难点:体会实际问题的生活情节,将数量关系抽象概括成为方程模型。

教学关键:调动全体学生的积极性,让学生参与实践,在实践中提问、交流、合作、探索,正确地列出方程,解决问题。

利用多媒体课件引入问题,让学生在实际背景下发现和理解数学问题。

问题1:销售中的盈亏:

分析:两件衣服共卖了120(=60x2)元,是盈是亏要看这家商店买进这两件衣服时花了多少钱,如果进价大于售价就亏损,反之就盈利。

小组讨论:

问题2:用那种灯省钱。

分析:问题中有基本的等量关系。

费用=灯的售价+电费。

一元一次教案十篇二

尊敬的各位老师:

对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材。

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。

不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。

二、说学情。

合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

三、说教学目标。

根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能。

认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。

(二)过程与方法。

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

(三)情感态度价值观。

通过数学建模,提高对数学的学习兴趣。

四、说教学重难点。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

(一)教学重点。

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

(二)教学难点。

一元一次教案十篇三

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想.

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

2、最简方程的解法;

正确地解最简方程。

引导发现法。

1.什么叫等式?等式具有哪些性质?

2.什么叫方程?方程的解?解方程?

(1)只含有一个未知数;

(2)未知数的次数都是一次。

想一想:

(2)怎样求最简方程(其中是未知数)的解?

1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:

3、课堂小结:

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

一元一次教案十篇四

(一)知识与能力目标:(课件第2张)

1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法.

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:

1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)

1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

1.掌握一元一次不等式的解法。

2.掌握解一元一次不等式的`阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

(一)、复习:

教学环节

教 师 活 动

学 生 活 动

设 计 意 图

一元一次教案十篇五

教学目标:

1.知识目标。

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2.能力目标。

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;。

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(2)培养学生严谨的思维品质;。

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

教学重点:1.弄清列方程解应用题的思想方法;。

教学难点:1.括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

教学过程:

一、创设情境,提出问题。

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8。

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)。

二、探索新知。

1.情境解决。

问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

问题2:教师引导学生寻找相等关系,列出方程。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-2000)=150000。

去括号。

6x+6x-12000=150000。

移项。

6x+6x=150000+12000。

合并同类项。

12x=162000。

系数化为1。

x=13500。

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)。

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号。)。

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。

例题:解方程3x-7(x-1)=3-2(x+3)。

解:去括号,得3x-7x+7=3-2x-6。

移项,得3x-7x+2x=3-6-7。

合并同类项,得-2x=-10。

系数化为1,得x=5。

三、课堂练习。

1.课本97页练习。

四、总结反思。

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

(由学生自主归纳,最后老师总结)。

四、作业布置。

1.课本102页习题3.3第1、4题。

2.配套资料相关练习。

一元一次教案十篇六

3.使学生初步养成正确思考问题的良好习惯.。

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.。

例1某数的3倍减2等于某数与4的和,求某数.。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.。

答:某数为3.。

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.。

解之,得x=3.。

答:某数为3.。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原先有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.。

答:原先有50000千克面粉.。

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿.。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.。

其苹果数为3×5+9=24.。

答:第一小组有5名同学,共摘苹果24个.。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.。

(设第一小组共摘了x个苹果,则依题意,得)。

三、课堂练习。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.。

四、师生共同小结。

首先,让学生回答如下问题:

1.本节课学习了哪些资料?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答状况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆.。

五、作业。

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

一元一次教案十篇七

1、经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。

2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。

(师生活动)设计理念。

创设情境提出问题。

信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。

出示教科书80页的例2;观察下列两种移动电话计费方式表:

全球通神州行。

月租费50元/月0。

本地通话费0.40元/分0.60元/分。

1、你能从中表中获得哪些信息,试用自己的话说说。

2、猜一猜,使用哪一种计费方式合算?

3、一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?

4、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。

理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。

解决问题学生充分交流讨论、整理归纳。

解:1、用全球通每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用神州行不收月租费,根据累计通话时间按0.60元/分收通话费。

2、不一定,具体由当月累计通话时间决定。

3、全球通神州行。

200分130元120元。

300分170元180元。

0.6t=50+0.4t。

移项得0.6t-0.4t=50。

合并,得0.2t=50。

系数化为1,得t=250。

以表格的形式呈现数据,简单明了,易于比较。

通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。

学生练习,教师巡视,指导,讨论解是否合理。

知识梳理小组讨论,试用框图概括用一元一次方程分析和解决实际问题的基本过程。

学生思考、讨论、整理。

实际问题题。

列方程。

实际问题的答案。

数学问题的解。

这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。

让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。

小结与作业。

布置作业。

1、必做题:教科书82页习题2.2第2题。

2、一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。

在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对应用一元一次方程解决实际问题有较理性的认识,进一步体会模型化的思想。

一元一次教案十篇八

2.掌握等式的性质,理解掌握移项法则。

3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

重点。

难点重点:解方程、用方程解决实际问题。

难点:用方程解决实际问题。

教学流程。

师生活动时间复备标注。

二、典例回顾。

(1).x=5(2).x2+3x=2(3).2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解.

(1).x=3(2)x=3。

4.解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时.

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系.

三、基础训练:课本第113页第1.2.3题.

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

五、课堂小结:收获了哪些?还有哪些需要再学习?

学生作业。

课件出示问题明确知识要点。

学生练习基础上,教师点拨。

一元一次教案十篇九

3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

教学重点。

2、能验证一个数是否是一个方程的解。

教学难点。

寻找问题中的等量关系,列出方程。

教学过程。

一、情景诱导。

如果设大象的体重为xt,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

二、自学指导。

学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

附:自学提纲:

1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

三、展示归纳。

1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

2、发动学生进行评价、补充、完善;

3、教师根据展示情况进行必要的讲解和强调。

四、变式练习。

1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

附:变式练习。

2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程:。

3、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是。

4、设某数为x,根据题意列出方程,不必求解:

(1)某数比它的2倍小3;

(2)某数与5的差比它的2倍少11;

(3)把某数增加它的10%后恰为80.

6、若x=1是方程kx-1=0的解,则k=.

五、课堂小结。

通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?

六、布置作业。

课本83页习题3.1第1题。

一元一次教案十篇十

2、理解方程的解的概念,会判断一个数值是否是已知方程的解。

环节一自主学习——对于疑惑的问题尽量小组互助解决。

课前至少阅读课本两遍,完成例题与习题,熟知本节课学习目标与重点难点。

环节二生生互动——课堂5分钟练习并与小组成员相互交流心得。

a。b。c。d。

2、方程的概念:含有的等式叫做方程。

a。b。c。d。

4、一元一次方程的概念:只含有个未知数,并且未知数的次数都是,这样的整式方程叫做一元一次方程。

5、根据下面所给的条件,能列出方程的是()。

a与的'差的b甲数的2倍与乙数的的和。

c一个数的是6d与的差的。

6、由第5题可知,问题中必须含有才能列出方程,这正是列方程的关键!

a。b。c。d。

8、解方程与方程的解的概念:解方程就是求出使方程中等号的值,而这个值就是。

环节三师生互动——你惑我释,合作交流,知识提升。

一元一次教案十篇十一

一、教学目标。

知识与技能。

1、会根据实际问题中的数量关系列方程解决问题。

过程与方法。

培养学生的数学建模能力,以及分析问题解、决问题的能力。

情感态度与价值观。

1、通过问题的`解决,培养学生解决问题的能力。

2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。

二、重点难点。

重点。

根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。

难点弄清题意,用列方程解决实际问题。

三、学情分析。

学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。

四、教学过程设计。

教学。

环节问题设计师生活动备注情境创设。

讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。

创设问题情境,引起学生学习的兴趣。

学生动手解方程。

自主探究。

问题一:

一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

问题二:

问题三:

整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。

您可能关注的文档