二次根式的乘除法教案2课时(模板13篇)

  • 上传日期:2023-11-23 17:19:22 |
  • zdfb |
  • 11页

教案是教师在教学过程中制定的一种教学计划,用于指导教学活动的进行。教案应该引导学生进行积极的思考和自我评价,促进他们的学习反思和成长。教案的编写需要不断总结和改进,希望这些教案范文能为大家提供一些思路和借鉴。

二次根式的乘除法教案2课时篇一

(2)会用公式化简二次根式。

2、目标解析。

(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式。

教学问题诊断分析。

本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难、运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气、,培养学生良好的运算习惯。

在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简。

本节课的教学难点为:二次根式的`性质及乘法法则的正确应用和二次根式的化简。

教学过程设计。

1、复习引入,探究新知。

问题1什么叫二次根式?二次根式有哪些性质?

师生活动学生回答。

【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质。

问题2教材第6页“探究”栏目,计算结果如何?有何规律?

师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容。

2、观察比较,理解法则。

问题3简单的根式运算。

师生活动学生动手操作,教师检验。

问题4二次根式的乘除成立的条件是什么?等式反过来有什么价值?

师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质。

【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况、乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力。

3、例题示范,学会应用。

例1化简:(1)二次根式的乘除;(2)二次根式的乘除。

师生活动提问:你是怎么理解例(1)的?

师生合作回答上述问题、对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外、。

再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

例2计算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

师生活动学生计算,教师检验。

(3)例(3)的运算是选学内容、让学有余力的学生学到“根号下为字母的二次根式”的运算、本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外、。

【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算、让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用。

教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号、可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题。

4、巩固概念,学以致用。

练习:教科书第7页练习第1题、第10页习题16、2第1题。

【设计意图】巩固性练习,同时检验乘法法则的掌握情况。

5、归纳小结,反思提高。

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)你能说明二次根式的乘法法则是如何得出的吗?

(2)你能说明乘法法则逆用的意义吗?

(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

6、布置作业:教科书第7页第2、3题、习题16、2第1,6题。

五、目标检测设计。

1、下列各式中,一定能成立的是()。

【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础。

【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式。

3、已知二次根式的乘除,化简二次根式二次根式的乘除的结果是()。

【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式。

二次根式的乘除法教案2课时篇二

二次根式的除法法则及其逆用,最简二次根式的概念。

2、内容解析。

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。

二、目标和目标解析。

1、教学目标。

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

2、目标解析。

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。

三、教学问题诊断分析。

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行、二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算、教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

四、教学过程设计。

1、复习提问,探究规律。

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则。

五、目标检测设计。

二次根式的乘除法教案2课时篇三

2学情分析。

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

3重点难点。

难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

4教学过程。

4。1第一学时。

教学活动。

活动1【导入】复习提问,探究规律。

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。

2.观察思考,理解法则。

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。

活动2【讲授】观察思考,理解法则。

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。

活动3【活动】例题示范,学会应用。

例1计算:(1);(2);(3)。

师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。

问题6课件展示一组二次根式的计算、化简题。

【设计意图】让学生用总结出的结论进行二次根式的运算。

活动4【练习】巩固概念,学以致用。

例2教材第9页例7。

再提问章引言中的问题现在能解决了吗?

【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

活动5【测试】目标检测设计。

1.在、、中,最简二次根式为。

【设计意图】考查对最简二次根式的概念的理解。

2.化简下列各式为最简二次根式:;。

【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。

3.化简:(1);(2)。

【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。

活动6【作业】布置作业。

教科书第10页练习第1,2,3题;

教科书习题16。2第10,11题。

3.人教版山雨教学设计。

4.人教版《山雨》教学设计。

5.人教版思品教学设计。

6.人教版《雨说》教学设计。

7.人教版鸟的天堂教学设计。

8.人教版画杨桃教学设计。

9.人教版将相和教学设计。

10.人教版万年牢教学设计。

二次根式的乘除法教案2课时篇四

4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想。

二、教学设计。

小结、归纳、提高。

三、重点、难点解决办法。

1.教学重点:分母有理化.。

2.教学难点:分母有理化的技巧.。

四、课时安排。

1课时。

五、教具学具准备。

投影仪、胶片、多媒体。

六、师生互动活动设计。

复习小结,归纳整理,应用提高,以学生活动为主。

七、教学过程。

【复习提问】。

例1说出下列算式的运算步骤和顺序:

(1)(先乘除,后加减).。

(2)(有括号,先去括号;不宜先进行括号内的运算).。

(3)辨别有理化因式:

有理化因式:与,与,与…。

不是有理化因式:与,与…。

例如,、、等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

引入新课题.。

【引入新课】。

例2把下列各式的分母有理化:

(1);(2);(3)。

解:略.。

(二)随堂练习。

1.把下列各式的分母有理化:

(1);(2);

(3);(4).。

解:(1).。

(2).。

另解:.。

(3)。

另解:.。

通过以上例题和练习题,可以看出,有关二次根式的.除法,可先写成分式的形式,然后通过分母有理化进行运算,例如:

现将分母有理化就可以了.。

学生易发生如下错误将式子变形为而正确的做法是.。

2.计算:

(1);

(2);

(3).。

解:(1)。

(2)。

(3)。

(三)小结。

二次根式的乘除法教案2课时篇五

1.知识技能:

(1).会进行简单的二次根式的除法运算.

(2).使学生能利用商的算术平方根的性质进行二次根式的化简与运算.

2.数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.

3.解决问题:引导学生从特殊到一般总结归纳的方法以及类比的方法,解决数学问题.

4.情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的.

二次根式的乘除法教案2课时篇六

例1判断:

(1);()。

(2);()。

(3);()。

(4);()。

(5).()。

(要求学生找出错误的原因,能进行加减运算的,要加以改正.)。

例2计算:

(1).。

解:

(2).。

解:

(3).。

解:

(4).。

解:

小结:二次根式加减运算的步骤:

(1)如果有括号,根据去括号法则去掉括号.。

(2)把不是最简二次根式的二次根式进行化简.。

(3)合并同类二次根式.。

例3当,时,求代数式的值.。

解:

当时,时,

原式。

例4已知,求下列各式的.近似值(精确到0.01):

(1);

(2).。

解:(1).。

当时,

原式.。

(2)。

当时,

原式.。

注意:求值时,一般应对代数式先化简,再代入数值.。

(二)随堂练习。

计算:

(1);

(2);

(3)已知,,求式子的近似值(精确到0.01).。

(三)总结、扩展。

可通过例题加以说明.。

练习:教材p191中2(6)、(7),3;p194中7。

(四)布置作业。

(五)板书设计。

标题。

1.例题2.练习题。

例1……3.小结。

例2……。

例3……。

八、背景知识与课外阅读。

运算。

二次根式的乘除法教案2课时篇七

这节课教学困难重重,因为经过一个星期的了解,整个班学生八年级升九年级的'期末考试数学科目最高分56分,于是五十几分的就成了本班的数学宝贝了,可五十几分包括56分只有四人,三十几分也没几个,其他了都是二十几以下了,学生已有的的数学基础少得可怜,所以学生学习起来很困难,教学也寸步难行,虽然本节课的重点是二次根式的乘除法法则,难点是灵活运用法则进行计算和化简,但是学生难明白只能放慢进度,学生学会一点点,极少数的人掌握了都成了我坚持的理由。

教学的开始从小学的口诀复习引入,进入两个相同的数相乘用某数的平方表示的学习,才真正进入九年级探究将二次根式的性质反过来就是二次根式的乘除法法则,利用这个法则进行二次根式的乘法和除法运算。

文档为doc格式。

二次根式的乘除法教案2课时篇八

重难点分析。

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议。

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的a层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

复习:

1.计算:(1);(2).

解:(1)(2)。

==。

=;=.

2.在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方式?分别用式子表示出来。

m(a+b+c)=ma+mb+mc。

(a+b)(m+n)=am+an+bm+bn,。

其中a,b,m,n都是单项式。

完全平方式是。

;。

在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。引入新课。

二次根式的乘除法教案2课时篇九

新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标。

知识与技能。

1.知道什么是二次根式,并会用二次根式的意义解题;。

2.熟记二次根式的性质,并能灵活应用;。

过程与方法。

通过二次根式的概念和性质的学习,培养逻辑思维能力;。

情感态度价值观。

1.经历将现实问题符号化的过程,发展应用的意识;。

2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

教学重点和难点。

重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;。

难点:确定二次根式中字母的取值范围。

教学方法。

启发式、讲练结合。

教学媒体。

多媒体。

课时安排。

1课时。

二次根式的乘除法教案2课时篇十

重难点分析。

本节的重点是的化简.本章自始至终围绕着二次根式的化简与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式。

这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议。

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题。

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出。

(2)从算术平方根的意义引入.。

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(第1课时)。

一、教学目标。

3.通过本节的学习渗透分类讨论的数学思想和方法。

二、教学设计。

对比、归纳、总结。

三、重点和难点。

四、课时安排。

1课时。

五、教具学具准备。

投影仪、胶片、多媒体。

六、师生互动活动设计。

复习对比,归纳整理,应用提高,以学生活动为主。

七、教学过程。

一、导入新课。

我们知道,式子()表示非负数的算术平方根.。

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.。

二、新课。

计算下列各题,并回答以下问题:

(1);(2);(3);

(4);(5);(6)。

(7);(8)。

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.。

答:

(1);(2);(3);

(4);(5);(6)。

(7);(8).。

3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有。

(),

用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有。

().。

问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)。

答:

请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?

答:

填空:

1.当_________时,;

2.当时,,当时,;

3.若,则________;

4.当时,.。

答:

1.当时,;

2.当时,,

当时,;

3.若,则;

4.当时,.。

例1化简().。

分析:可以利用积的算术平方根的性质及二次根式的性质化简.。

解,因为,所以,所以。

指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果.。

例2化简().。

解.。

例3化简:(1)();(2)().。

解(1).。

(2).。

注意:(1)题中的被开方数,因为,所以.。

(2)题中的被开方数,因为,所以.。

这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.。

例4化简.。

所以要比较与3及1与的大小以确定及的符号,然后再进行化简.。

解因为,,所以。

所以。

三、课堂练习。

1.求下列各式的值:

(1);(2).。

2.化简:

(1);(2);

(3)();(4)().。

3.化简:

(1);(2);

(3);(4);

(5);(6)().。

答案:

1.(1)0.1;(2).。

2.(1);(2);(3);(4).。

3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.。

四、小结。

1.二次根式的意义是,所以,因此,其中可以取任意实数.。

五、作业。

1.化简:

(1);(2);

(3)();(4)();

(5);(6)(,);

(7)().。

2.化简:

(1);

(2)();

(3)(,).。

答案:

1.(1)-30;(2);(3);

(4);(5);(6);(7).。

2.(1)2;(2)0;(3).。

二次根式的乘除法教案2课时篇十一

上学期在教本节课开始时,首先由一个要在一块长方形木板上截出两块面积不等的正方形,引导学生得出两个二次根式求和的运算。从而提出问题:如何进行二次根式的加减运算?这样通过问题指向本课研究的重点,激发学生的学习兴趣和强烈的求知欲望。

本节课是二次根式加减的第一节课,它是在二次根式的乘除的基础上的进一步学习,目的是探索二次根式加减法运算法则,在设计本课时教案时,着重从以下几点考虑:

1.先通过对实际问题的解决来引入二次根式的加减运算,再由学生自主讨论并总结二次根式的加减运算法则。

2.四人小组探索、发现、解决问题,培养学生用数学方法解决实际问题的能力。

3.对法则的教学与整式的加减比较学习。

在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。

二次根式的乘除法教案2课时篇十二

重难点分析。

本节课的重点是二次根式的加、减、乘、除、乘方、开方的混合运算及分母有理化。它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性,提高性综合学习;二次根式的运算和有理化的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

本节课的难点是把分母中含有两个二次根式的式子进行分母有理化。分母有理化,实际上二次根式的除法与混合运算的综合运用。分母有理化的过程,一般地,先确定分母的有理化因式,然后再根据分式的基本性质把分子、分母都乘以这个有理化因式,就可使分母有理化。所以对初学者来说,这一过程容易出现找错有理化因式和计算出错的问题。

教法建议。

1.在知识的引入上,可采取复习引入方式,比如复习有理数的混合运算或整式的运算。

2.在二次根式的加减、乘法混合运算中,要注意由浅入深的层次安排,从单项式与多项式相乘、多项式与多项式到乘法公式的应用,逐渐从数过渡到带有字母的式。

3.在有理化因式教学中,要多出几组题目从不同角度要求学生辨别,并及时总结。

学生特点:实验班的a层学生(数学实施分层教学),主动学习积极性高,基础扎实,思维活跃,,并具有一定的独立分析问题,探索问题,归纳概括问题的能力,有较好的思考、质疑的习惯。

教材特点:本节课是在学习了二次根式的三个重要概念(最简二次根式、同类二次根式、分母有理化)和二次根式的有关运算(二次根式的乘法、二次根式的除法、二次根式的加减法)基础上,将加、减、乘、除、乘方、开方运算综合在一起的混合运算的学习。

鉴于学生的特点及教材的特点,本节课主要采用“互动式”的课堂教学模式及“谈话式”的教学方法,以此实现生生互动、师生互动、学生与教材之间的互动。具体说明如下:

(一)在师生互动方面,教师注重问题设计,注重引导、点拨及提高性总结。使学生学中有思、思中有获。如本节课开始,出示书中例题1:

强调:运算顺序及运算律和有理数相同。

(二)在学生与学生的互动上,教师注重活动设计,使学生学中有乐,乐中悟道。教师设计一组题目,让学生以竞赛的形式解答,然后以记成绩的方法让其它同学说出优点(简便方法及灵活之处)与错误。由于本节课主要以计算为主,对运算法则及规律性的基础知识,学生很容易掌握而且从意识上认为本节课太简单,不会很感兴趣,所以为了提高学生的学习兴趣及更好的抓好基础,提高学生的运算能力,如此这般设计。

(三)在个体与群体的互动方式上,教师注重合作设计,使学生学中有辩,辩中求同。如本节课中对重点问题:“分母有理化”的教学,出示一个题目,让学生思考,找个别学生说出自己的想法,然后其它同学补充完成。

学生的主体意识和自主能力不是生来就有的,主要靠教师的激励和主导,才能达到彼此互动。正是在这一教育思想的指导下,追求学生的认知活动与情感活动的协调发展,有效地唤起学生的主体意识,在和谐、愉快的情境中达到师生互动,生生互动。互动式教学模式的目的是让教师乐教、会教、善教,促使学生乐学、会学、善学,从而优化课堂教学、提高教学质量,在和谐、愉快的情景中实现教与学的共振。

二次根式的乘除法教案2课时篇十三

各位评委大家下午好:

今天我说课的内容是八年级下册第十二章第二节的第一课时《12.2二次根式的乘除(1)》。通过对教材及学生实际情况的分析,我将从检查预习,自主学习,合作交流,展示质疑,拓展提高、总结检测六个方面展开教学。

(一)检查预习。

1.在上课前一天将学案发给学生,引导学习预习。上课最初5分钟检查学生的预习情况。课程标准要求学生“学会自己预习”,因此要求学生课前通过教材自主预习掌握新知识,掌握知识之间的联系,上课以自检,小组互检和课堂检查相结合的方式督促。在检查预习部分我设计了两个自学内容,自学一重点是特殊的二次根式相乘,让学生自己发现规律;自学二是一般的二次根式相乘,学生可以利用正方形面积减去其他三角形的面积求出矩形的面积,而矩形的面积还等于长乘以宽,进而得到×=4,同样得到规律,进而总结出二次根式乘法公式。

2.检查预习的过程中已经进入了新课,这样避免了情景导入后因检查预习造成的情感脱节。

3.出示学习目标,让学生明确学习目标,上课才有了学习的方向,也便于学生课后自我评价。

(二)自主学习:

学讲开放课堂也是在培养学生学会自学,因此我设计这个环节,让学生自己打开教材,自主学习,多媒体出示学习要求,方法指导,学生在自主设计的基础上小组合作推选出代表发言,然后用小黑板展示各组成果。老师最后归纳总结,在保证正确的前提下,对学生积极发言,勇于回答问题提出表扬,并给予一定的分值,在这一过程中既训练了学生主动学习的能力,自主学习的意识,又培养了学生的数学表达能力,同时还督促了学生整洁、规范的书写。

知者加速环节是考虑到每个学生学习能力的不同,各小组完成速度的不同,让学有余力的同学有事可干,在学案中设计这一环节,也便于更好的过渡到下一个环节。

(三)小组合作。

这一环节教师提出任务,让每一组成员相互讨论,筛选、补充、概括等四个学习活动,从而形成新的学习成果。这样既调动了学生学习的积极性,同时引导学生学会了新的知识点,解决了教学重难点。

(四)展示质疑。

这个环节我设计一个抢答环节,让每一个小组都有机会参与到这个环节中来,采用自主思考,小组合作交流,小组代表展示的方式。并让各层次的学生都谈一谈,让学生再一次通过自主、合作、探究品尝合作的快乐和集体智慧的甘甜。既体现了教材的'主旨,又在发展数学表达能力的同时,发散了思维。

在学生各抒己见之后老师总结:进入拓展延伸部分。

(五)拓展延伸。

这一环节设置的目是让学生把学习和生活,把课堂和课外有机的结合起来,锻炼学生的表达能力的同时,更好的理解数学源于生活,服务于生活这一特点,所以每个人都要学好数学,起到了很好的教育作用。

(六)课堂检测。

通过检测让学生知道自己的掌握情况,便于课后巩固,也便于老师了解学生的学习情况,做好下面的备课。

在这里我设计了让学生谈谈本节课的收获,通过学生自己谈收获。既反思了本节课的学习,锻炼了学生评价与自我评价的能力,又提高了学生的数学表达能力。

作业布置主要是从巩固性和发展性考虑的,布置一些适合学生发展的题目,让每位学生都能得到不同的发展。

这是我设计的“学讲计划”模式下的说课稿,有些不成熟的地方,还需要大家指正、批评。

您可能关注的文档