最新等式的性质说课稿一等奖 等式的性质说课稿冀教版(十一篇)
文件格式:DOCX
时间:2023-03-22 13:03:46    小编:zdfb
最新等式性质说课稿等奖 等式性质说课稿冀教版 文件夹
相关文章
猜你喜欢 网友关注 本周热点 精品推荐

最新等式的性质说课稿一等奖 等式的性质说课稿冀教版(十一篇)

  • 上传日期:2023-03-22 13:03:46 |
  • zdfb |
  • 10页

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇一

“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。该部分知识是学生解方程的依据,它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。教材通过让学生观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质。关注学生由具体实例到一般意义的抽象概括过程,有意识地渗透“等价思想”、“建模思想”。

根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。

本课的数学思考:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程,渗透“等价”、“建模”等数学思想。

情感态度与价值观:鼓励学生积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。

教学重难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,也是难点。

新课标强调学生是数学学习的主人。学生已经了解了方程的意义而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。

《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法上采用了观察法、讨论法、归纳法等,让学生通过实验观察和分组讨论探究学习。

天平、多媒体课件。由于学具有限,所以采用了认识天平和通过多媒体课件展示结果。

我把教学过程分为以下五个环节:导入新课——引导探究、合作交流——巩固练习、运用新知——课堂小结——板书设计

第一环节:导入新课。引导学生共同列举等式,对等式进行简单回顾,之后观察课件中的天平,用含有字母的等式来表示,由此引出本节课的新知。

第二环节:引导探究、合作交流。

1、猜想、验证。

通过课件展示教材第64页情境图1,先让学生猜想然后再通过课件在天平上演示过程,验证学生的猜想。

第一次猜想验证后引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。

2、假设数据、验证规律。

得到结论后通过假设物体的具体的数据验证学生自己总结出的规律:等式两边加上同一个数,左右两边仍然相等。

3、小组合作探究、发现规律。

通过课件展示教材情景图让学生小组合作探究:如果天平的两端同时拿掉1个苹果,结果会怎样?学生汇报后,再次通过课件进行演示。引导学生小结出:等式两边同时减去同一个数,左右两边仍然相等。

4、巩固练习、应用规律

通过一些简单的等式问答,应用等式两边同加或同减相同的数以加强规律的应用。

第四环节:课堂总结,布置作业。

让学生分别谈谈自己的收获,以强化巩固所学知识。课后作业安排为开放的任务:和同组的同学互相写10道利用等式的性质解决的问题,例如:如果x=y,x+8=( )+8。

第五环节:板书设计

在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇二

(一)教材地位及作用

《不等式的性质》节选自普通高中课程标准实验教科书必修五b版第三章第一节第二部分的内容,本节课的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质。这部分内容是不等式变形、化简、证明的理论依据和基础。教材通过具体实例,让学生感受现实生活中存在大量的不等关系,在不等式与实数运算的关系基础上,系统归纳和论证了不等式的一系列性质。因此本节课在高中数学中具有举足轻重的作用。

(二)教学目标

知识与技能目标:理解不等关系与不等式的联系,会用不等式表示不等关系。

过程与方法目标:通过具体情境,学生感受现实世界和日常生活中存在着大量的不等关系;在探究的过程中,掌握比较两个实数大小的方法。

情感态度与价值观目标:体验数学知识在生活中的应用,激发学生探究的兴趣和学习热情。

(三)教学重难点

依据以上对教材内容及教学目标的分析,本节课的教学重点为掌握不等式的性质。教学难点为不等式性质的证明。

学生已经会借助数轴来比较两个实数的大小,能理解等式性质,知道等式性质是解方程的依据。在初中时曾经接触过三个关于不等式的结论:“不等式的两边同时加上(或减去)同一个数,不等号方向不变”;“不等式的两边同时乘以(或同除以)同一个正数,不等号方向不变”;“不等式的两边同时乘以(或同除以)同一个负数,不等号方向改变”。同时,学生已具有一定的观察能力、抽象概括能力和合情推理能力。学生对不等式的性质的理解相对来说比较容易,但是对它们进行证明,却比较困难。因此在教学中我会采取适当的方法予以指导。

根据本节课的教学目标,我主要采用类比——探究的教法,同时全程贯穿合作交流,通过这样的教法来提高学生的分析、类比能力。

学生在合作探究证明的过程中,增强团队协作的意识,掌握不等式证明的方法,提高学生推理证明的能力。

为了更好地帮助学生搭建生活与教材的桥梁,本节课我将通过以下五个教学环节来阐述本节课的教学程序:

(一)创设情境,激趣导入

首先通过几个现实问题创设不等式的情境,如:公路上限速40km/h的路标,指示司机在前方行驶时,应使汽车的速度v不超过40km/h,用不等式表达即为v≤40km/h。通过这样的实例,说明现实世界中,不等关系是十分丰富的,从而激发学生的学习兴趣。

(二)分析探究,合作交流

1.类比-探究

首先,让学生自主阅读课本,以“运算中的不变性”思想为指导,让学生在不等式的加、减、乘、除、乘方、开方运算中,通过类比、猜想、验证、说理等活动,经历一个完整的数学探索过程。进而引导学生类比等式的基本性质,大胆猜想不等式的基本性质,并加以证明。这种在合情推理的基础上,经过严格证明,肯定学生的结论。并根据学生的反馈,给以适当的补充。

2.深入理解

向学生提出问题“定理为什么要证明?证明定理的主要依据或出发点是什么?”通过这样的提问,让学生深入理解证明的重要性。并向学生给以合适的引导,说明不等式性质是贯穿本章内容的一条主线,是证明不等式和解不等式的主要依据。要理解每一条性质的作用,注意性质中的“可逆”与“不可逆”,运用时注意条件的放宽和加强对结论的影响。

(三)巩固提高,加深理解

让学生在理解不等式性质的基础上,巩固练习课本65页的例题,让学生在独立思考证明的过程中,加深对不等式性质的理解。在此过程中,我会下去巡视,提醒学生证明要注意严谨,要有理有据。

(四)综合分析,归纳总结

让学生自主总结本节课的收获,这样设计的目的是让学生加深对本节课重点的理解,同时提高自己的语言表达能力。

(五)布置作业,拓展应用

根据学生对本节课的掌握情况,我布置了必做题和选做题,将课本66页的1、2题作为必做题,将书中没有证明的性质和推论的证明作为选做题。目的是为了让每个学生都能享受成功的喜悦,同时通过选做题,提高学生的证明能力。

不等式的性质

1.不等式的性质

2.推论

3.相关证明

这样的板书清晰明了,重点突出,目的是为了更好地帮助学生掌握本节的重点。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇三

尊敬的各位评委、老师:

大家好!

很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。

1. 教材的地位和作用

不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

2.教学重难点

重点:不等式的概念和不等式的基本性质1。

难点:利用不等式的基本性质1进行简单的变形。

知识目标:

在了解不等式的意义基础上,掌握不等式的基本性质1。

能力目标:

①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。

情感目标:

①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。

我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。

师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。

设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

学习目标:

1、 理解不等式的基本性质1。

2、 会解简单的不等式。

此时我出示本节课的学习目标和归纳出不等式的概念:

归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

在这个环节,我主要设计了以下二个活动来完成教学任务:

活动1:1、你能用“﹤”或“﹥”填空吗?

(1)5﹥3 (2)6﹥4

5+2﹥3+2 6+a﹥4+a

5-2﹥3-2 6-a﹥4-a

2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?

(2)小组合作讨论交流,大胆说出自己的“发现”。

本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

活动2:你能用自己的语言概括不等式的性质吗?

本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:

不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。

当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:

性质中的“不等号方向不变”的含义是什么?

使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。

在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。

通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。

如果x-5>4,那么两边都 ,可得到x>9

2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。

例1.用“>”或“<”填空

(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

解:

【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。

例2.把下列不等式化为x>a或x

(1)x+6>5 (2)3x>2x+2

解:

【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。

在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。

1、课本p133练习第1、2题;

2、判断是非:

①若a>b,则a-3>b-3 ( )

②若m

③若a-8

④若x>7,则x-4<3 ( )

回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。

1.不等式的概念和基本性质1.

2.简单不等式的变形.

通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。

最后是作业设计:

1、看书p132—p133(补全书上留白,划出重点内容,完成读书笔记);

2、习题5.1a组第1题(1)(2),第3题(1)(2);

3、选作:习题5.1b组第1题。

本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。

1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.

2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。

谢谢大家!

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇四

一、教学目标

1、知识与技能目标

掌握等式的性质,会运用等式的性质解简单的一元一次方程。

2、过程与方法目标

(1)体验和了解数学科学研究物质性质的一般过程和方法,认识实验在数学学习中的作用。

(2) 通过观察、 探究、归纳、应用培养学生观察、分析、综合、抽象能力,获取学习教学方法。

3、情感态度价值观目标

正确认识科学、技术与社会的相互联系,能运用数学知识解释生产、生活中的现象。初步体验科学探究的艰辛和喜悦。感受数学世界的奇妙与和谐。

通过学生间的交流与合作,培养学生积极愉悦地参与数学学习活动的意识和情感,敢于面对数学学习活动中的困难。获得成功的体验。体会解决问题中与他人合作的重要性。

二、教学重点与难点

重点:理解和运用等式的性质

难点:运用等式的性质解方程,把简单的一元一次方程变形为"x=a(常数)"的形式。正确认识除数不能为零。

教学时数:2课时(本节课是第一课时)

教学方法:引导发现法,互动教学法

教学过程:引导发现法

三、教学程序

(一)、创设情境,复习导入

上课开始,给出思考(算一算,试一试)能否用估算法求出下列方程的解。(学生只能估算不能笔算)

(1) 4x=24

(2) x+1=3

(3) 46x=230

(4) 2500+560x=15000

方程 (1)、(2)的解可以观察到,但是反复观察求解,比较复杂的方程 (3)、(4) 就比较困难。因此,我们还要讨论怎么解方程。

方程是含有未知数的等式。为了讨论方程,我们先来看看等式有什么性质。

请问:什么是等式?

请同学们思考下面的3个式子是等式么?

(1) x-2=4

(2) 1+2=3

(3) m+n=n+m

像这样用等号"="表示相等关系的式子。在等式中,等式左(右)边的式子叫做这个等式的左(右)边。

下面就让我们一起来探讨等式的性质吧!

(1)让学生能找出等式,分清等式的左边和右边。

(2)从学生已有知识出发,提出新问题,激发学生的学习兴趣和动机。

(引入课题)

(二)教师演示,学生观察

在教师的引导下,学生自主观察:

1、 使学生明确学生的内容和要求。

2、 结合图片天平的例子,让学生形象地初步感知等式的性质。

3、 注重学生知识的形成过程,让学生自由学习,自由探索,获得成功的体验,培养良好的学习习惯。

(三)、归纳总结,得出性质

1、在学生观察的基础上总结课本总结规律,得出性质

等式性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

等式性质2:等式的两边乘同一个数或除以同一个不为0的数,所得结果仍相等。

2、提出问题:()你能用式子的形式表示等式的性质吗?

教师板书:等式性质1 如果教案《等式的性质》 那么教案《等式的性质》 .

等式性质2如果教案《等式的性质》那么教案《等式的性质》 教案《等式的性质》 .

3、得出等式的性质后,为了加深理解,再用具体的例子验证,体现了从具体到形象,抽象到具体的认知规律。

(四)、解释说明,学以致用

1、掌握等式性质后,关键在于运用。因此,出示一组口答题,利用等式性质变形。

(1)从x=y能否得到x+5=y+5 ?为什么?

(2)从x=y能否得到x-2=y-2?为什么?

(3)从x=y能否得到2x=2y?为什么?

(4)从7x=7y能否得到x=y?为什么?

2、例1 例2的讲解,让学生会利用 性质解方程的过程与方法。

例1 利用等式性质解下列方程:

(1)教案《等式的性质》 (2)教案《等式的性质》

解:(1)两边减7,得教案《等式的性质》

于是 教案《等式的性质》

(2)两边同时加上6,得教案《等式的性质》

于是 教案《等式的性质》

练习(1)教案《等式的性质》 (2)教案《等式的性质》 (3)教案《等式的性质》

例2 利用等式性质解下列方程:

(1)教案《等式的性质》 (2)教案《等式的性质》

解:(1)两边同除以-5 ,得教案《等式的性质》

于是教案《等式的性质》

(2)两边同乘以3,得教案《等式的性质》

于是教案《等式的性质》

练习2 (巩固性质2)

(1)教案《等式的性质》

(2)教案《等式的性质》

(3)教案《等式的性质》

通过课堂练习,使学生感受成功的喜悦

(五)、课堂小结 ,巩固练习

1、等式的性质的探索过程。

2 、利用等式的性质解方程,就是把方程变形为教案《等式的性质》 教案《等式的性质》 形式。

(六)、 布置作业,巩固新知

习题3.1 第4题

(七 )、后记

从情境创设来调动学生学习的积极性,预使课堂气氛变得较活跃,鼓舞我的教学热情,树立信心。我会在实践中不断的调整、完善教学方法和形式,同时改正不足,使教学活动更加有序顺利的进行。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇五

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1. 感受生活中存在的不等关系,了解不等式的意义。

2. 掌握不等式的基本性质。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

重点:不等式概念及其基本性质

难点:不等式基本性质3

教法与学法:

1. 教学理念: “ 人人学有用的数学”

2. 教学方法:观察法、引导发现法、讨论法.

3. 教学手段:多媒体应用教学

4. 学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

(此处学生是很容易得出买30张门票需要4x30=120(元), 买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)

紧接着进一步提问:若人数是x时,又当如何买票划算?

引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3) a与b的和小于5;

(4) x与2的差大于-1;

(5) x的4倍不大于7;

(6) 的一半不小于3

关键词:非负数,非正数,不大于,不小于,不超过,至少

回到引入课题时的门票问题120<5x,我们希望知道x的取植范围,则须学习不等式的性质,通过性质的学习解决x的取植

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果a>b,那么

(1) a-3 b-3 (2) 2a 2b (3) -3a -3b

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系

根据不等式基本性质,将下列不等式化为“<”或“>”的形式

(1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3

[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想

方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,

让学生在合作交流中完成任务,体会合作学习的乐趣。]

问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)

[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]

3、尝试练习,应用新知

小黑板出示下列练习

一:孙悟空火眼金睛:

1、如果x+5>4,那么两边都可得x>-1

2、在-7<8的两边都加上9可得。

3、在5>-2的两边都减去6可得。

4、在-3>-4的两边都乘以7可得。

5、在-8<0的两边都除以8可得

二:你来决策:

如果a>b,那么

1、a-3 b-3(不等式性质)

2、2a 2b(不等式性质)

3、-3a -3b(不等式性质)

4、a-b 0(不等式性质)

[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]

出示例题

例1根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

(1)x-5>-1(2)-2 x>3

(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)

解(1)根据不等式的性质1,两边都加上5得:

x-5+5>-1+5

即x>4

(2)根据不等式的性质3,两边都除以-2得:

即x<-3/2

练习:根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:

(1)3x>5(4)-4 x<3-x

[设计意图:由于新教材中例题较少,学生对于书写格式了解太少,因此教师应该加以规范。]

4、总结反思,获得升华

让学生从知识方面、能力方面、思想方面进行总结。鼓励学生畅所欲言总结对本节课的收获与体会。

[设计意图:让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。]

5、布置作业,深化巩固

必做作业:习题11.2第二题推荐作业:课本中的试一试。

[设计意图:这样做的目的在于,让不同层次的学生都有不同程度的提高。]

为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。本着板书的科学性,条理性原则,设计板书如下:

11.2不等式的基本性质 不等式的基本性质 1:如果ab,那么a+c>b+c,a-c>b-c(2)-2 x>3 2:如果a>b,c>0,那么ac>bc 如果a0,那么acb,c<0,那么acbc等式的性质说课稿一等奖 等式的性质说课稿冀教版篇六

我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。

1.教材的地位和作用

本节课的内容是选自人教版义务课程标准实验教科书七年级下第九章第一节第二课时《不等式的基本性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

2.教学目标的确定

教学目标分为三个层次的目标:

⑴知识目标:主要是理解并掌握不等式的三个基本性质。

⑵能力目标:培养学生利用类比的思想来探索新知的能力,扩充和完善不等式的性质的能力。

⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,体会类比思想和获得成功的喜悦。

3.教学重点和难点

不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习以及用不等式的性质解不等式。本节课的难点是用不等式的性质化简。

本节课在性质讲解中我采取探索式教学方法,即采取观察猜测---直观验证---托盘实验---得出性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质应用的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采取精讲多练、讲练结合的方法来落实知识点。

鉴于七年级的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一种类型的题多练,并及时引导学生用小结方法,克服思维定势。

例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

1.创设情境,复习引入

等式的基本性质是什么?

学生活动:独立思考,指名回答.

教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

请同学们继续观察习题:

观察:用“”或“”填空,并找一找其中的规律.

(1)55+2____3+2,5-2____3-2

(2)–1,-1+2____3+2,-1-3____3-3

(3)6>2,6×5____2×5,6×(-5)____2×(-5)

(4)–2(-2)×6____3×6,(-2)×(-6)____3×(-6)

学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

学生活动:观察思考,猜想出不等式的性质.

教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

师生活动:师生共同叙述不等式的性质,同时教师板书.

不等式基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

学生活动:观察③④题,并将题中的5换成2,-5换成一2,按题的要求再做一遍,并猜想讨论出结论.

观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?为什么?

师生活动:由学生概括总结不等式的其他性质,同时教师板书.

不等式基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.

不等式基本性质3不等式两边都乘(或除以)同一个负数,不等号的方向改变.

师生活动:将不等式-2<3两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

学生活动:看课本第124页有关不等式性质的叙述,理解字句并默记.

强调:要特别注意不等式基本性质3.

实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

学生活动:思考、同桌讨论.

归纳:只有乘(或除以)负数时不同,此外都类似.

(1)如果x-54,那么两边都可得到x9

(2)如果在-78的两边都加上9可得到

(3)如果在5-2的两边都加上a+2可得到

(4)如果在-3-4的两边都乘以7可得到

(5)如果在80的两边都乘以8可得到

师生活动:学生思考出答案,教师订正,并强调不等式性质的应用.

2.尝试反馈,巩固知识

请学生先根据自己的理解,解答下面习题.

例1 利用不等式的性质解下列不等式并用数轴表示解集.

(1)x-7>26(2)-4x≥3

学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

(四)总结、扩展

本节重点:

(1)掌握不等式的三条基本性质,尤其是性质3.

(2)能正确应用性质对不等式进行变形.

(五)课外思考

对比不等式性质与等式性质的异同点.

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇七

今天,我说课的题目是鲁教版义务课程标准实验教科书七年级下第十一章第二节《不等式的基本性质》,主要从以下几个方面进行说课:教材分析,教法分析 , 学法指导,教学过程设计,教学评价。

本节课主要研究不等式的性质和简单应用。它是进一步学习一元一次不等式的基础。它与前面学过的等式性质有联系也有区别,为渗透类比,分类讨论的数学思想提供了很好的素材。这节课在整个教材中起承上启下的作用。它是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

结合本节课的地位和作用,设计本节课的教学目标如下:

(1)探索并掌握不等式的基本性质,能解简单的不等式;

(2)理解不等式与等式性质的联系与区别;

(1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:

(2)通过探索过程,渗透类比,分类讨论的数学思想;

(1)培养学生的钻研精神,同时加强同学间的合作与交流;

(2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,

(3)通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

结合本节课的教学目标,确定本节课的重点是不等式性质及简单应用。难点是不等式性质的探索过程及性质3的应用。

为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统。

为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法, 即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。 为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。

由于七年级学生有比较强的好奇心,好胜心以及显示欲。同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法。这样可以使学生积极参与教学过程。在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想。

基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计:

1.创设情境,类比猜想

提出问题:今年我比你大10 岁,5年后,我比你大还是比你小,大几岁,小几岁?

2年前,我比你大还是比你小,大几岁,小几岁?

类比等式的性质1,不等式有类似的性质吗?

【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1

2、举例说明,验证结论

设计小活动:你说我验

同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确

【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。

学生总结,教师板书,以及注意引导学生理解"同一个整式"的含义。

3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质

不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。

【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法, 即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性。

师生活动:由学生概括总结不等式的性质2,3,同时教师板书。

4、例题讲解,探究新知

例1 将下列不等式化成"x>a"或"x

(1)x-5>-1

(2)-2x>3

解:(1)根据不等式的基本性质1,两边都加上5,得

x>-1+5

即 x>4

(2)根据不等式的基本性质3,两边都除以-2,得

x<-3/2

【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范。

【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式

例2:对习题1进行适当的改编:已知a

(1)a-3____b-3 根据不等式的性质1

(2)6a____6b 根据不等式的性质2

(3)-a_____-b 根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励。

注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变。这是学生做题时易出错误之处。

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力

5、小试牛刀:断正误,正确的打"√",错误的打"×"

①∵ ∴ ( ) ②∵ ∴ ( )

③∵ ∴ ( ) ④若 ,则 ∴ , ( )

学生活动:一名学生说出答案,其他学生判断正误。

答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错

6、拓展思维,培养能力

比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

7、分层布置作业

必做题:

选做题:

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇八

1、教材的地位和作用:《等式的性质》是人教版实验教科书七年级上册第二章第一小节的内容,本节是这一内容的第二课时。旨在为后继学习解方程提供理论依据,也为以后在代数几何中进行量与量之间的转换,代数式的恒等变形提供依据,更为以后学习不等式打下基础,同时也是对前一小节估算方法求方程的解一次推进,更是对小学学习等式的性质,解方程的一次变革。实现由具体的数向抽象的字母过渡,从而让学生体验用字母表示数的优越性。基于教材的安排及初一学生直观形象思维的特点,特确定如下教学重、难点:

重点:等式的性质及运用等式性质解方程。

难点:等式性质的导出过程。

新课标中要求,数学课堂要让学生体验到数学是一个充满着观察、实验、归纳、类比、猜测的探索过程,考虑到初一学生对这一内容并不陌生,难在从实验中总结出一般性规律。确定如下教学目标:

1、认知目标:掌握等式的性质,会运用等式的性质解简单的一元一次方程。 综合、抽象能力,获取学习数学的方法。

3、情感目标:通过群体间的交流与合作,培养学生积极愉悦地参与数学学习活动的意识和情感,敢于面对数学活动中的困难,获得成功的体验。体验解决问题中与他人合作的重要性。

为突出重点、突破难点,达到教学目标,我准备采用以下教学方法:

1、实验观察,自主归纳法:

2、自主探究,讨论交流法:

3、自主学习,与讲授相结合法;

本节课我主要围绕三个什么来教学,即为什么学习等式的性质?等式的性质是什么?怎么运用等式的性质?。

(一)关于为什么学习等式的性质?主要是在引入时以古希腊数学家丢番图墓志铭上的名题作为情境导入,当学生列出方程后,提出问题:你能用估算的方法求出方程的解吗?你要试验多少次才能找到方程的解?当学生感到用估算的方法难于求解时,引出学习等式的性质的必要性。 2、能力目标:通对观察、实验、探究、归纳、应用,培养学生观察、分析、

这样设计从学生原有的知识出发,提出新问题,激发学生的求知欲望和动机。

(二)关于等式的性质是什么?是我教学中的一个重要环节,主要是通过教师在多媒体上进行演示实验,让学生通过实验、观察、探究、讨论、交流归纳出等式中满足的规律,进而把规律用式子表示出来。

1、实验前提出问题

等式像平衡的天平,能否通过加减天平两边的重量,使天平继续保持平 衡?

2、实验步骤如下:

实验一:

①出示天平,让学生第一次观察天平是否平衡?

②放上两个同重量但不同种类的物体,让学生第二次观察天平是否平衡?若平衡——这时说明左边物体为a千克,右边物体重量为bkg,那么,两边物质重量相等,可用什么式子表示? a=b

③在天平左边加一个3kg物体,让学生第三次观察天平是否平衡?如果不平衡,该怎么变化?

④在天平右边加一个物体,但与第三次重量不同,让学生第四次观察天平是否平衡?如果不平衡?怎么变化?

⑤在天平右边换上一个3kg的物体,让学生第5次观察天平是否平衡?如果平衡,从实验中,你发现了什么?

天平两边同时加上同重量的物体,天平仍然平衡?把平衡的天平看成等式a=b,相当于在等式两边做什么变化?你能用式子表示吗?

实验二:

①出示天平,两边各放同重量不同种类的物体,让学生观察天平是否平衡? ②拿走天平左边一个“△”,让学生观察天平是否平衡?若不平衡,怎么变化? ③拿走天平右边一个“□”让学生观察天平是否平衡?若不平衡,怎么变化? ④换回“□”、放上“△”让学生观察天平是否平衡?若不平衡,怎么变化? ⑤从实验中你发现了什么?

天平两边同时减去同重量物体时,天平仍然平衡?

把平衡的天平看成等式a=b.“△”形的重量为2kg,相当于等式两边做了什么变化?

⑥天平两边放上一物体xkg,观察天平是否平衡?

⑦天平两边放上一物体,(x+y)kg,观察天平是否平平衡?这里x、x+y都是些式子,说明等式还满足什么规律,你能把规律用式子表示吗?

实验三:

①出示天平

②天平的左边由○○→○○○○,天平不平衡,右边怎么变化?

③天平左边由○○→○○○○○○,天平不平衡,右边怎么变化?

从中你发现了什么?

说明天平左右两边同时扩大相同的倍数,天平仍平衡,扩大多少倍,也可以看成什么运算?相当于在等式a=b的两边做了一个什么变化呢?

④天平左边○○○○○○→○○○,天平平衡吗?右边怎么变化?

⑤天平○○○○○○→○○,天平平衡吗?右边怎么变化?

从中你发现了什么?

天平左右两边重量同时缩小相同倍数时,天平仍平衡?缩小多少倍也可以看成什么运算?相当于在等式a=b的两边做了一个什么变化?

引导学生说明等式性质2,并用式子表示?

这样设计让学生通过观察、实验、探究、归纳、探索发现等式的性质,培养学生观察能力、抽象思维能力、综合运用能力,让学生经历产生知识的过程。

(三)关于怎么应用性质,对书中例题只点拨,不讲解。特别是例题中的(3)强调一题多解。并在后面安排三个不同层次的练习,先简单应用,再逆用性质,最后解决数学家的岁数问题。

这样设计,一方面是巩固本节的重点知识和易错点;另一方面是培养学生自主学习的方法,提高他们的思维能力。

(四)关于小结:

主要是让学生辨析两个性质的相同和不同点。

1、演示实验能否达到效果。会不会有同学在已知结论的情况下,直接用结论,而不是通过实验发现结论。

2、等式是生活中的平衡状态,除了相等还有不相等,如果有学生问,就给学生作进一步的解释,为后面学习不等式的性质打下基础。

3、习题中有ax=-3x,推出a=-3,可能有学生忽视x不等于零。

4、实验后,学生可能无法用语言描述等式满足的规律。

5、求数学家的年龄时,可能有同学不会合并,这时降低要求,能做的更好,不能做的,放到下节课再解决。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇九

各位老师:

很高兴有这次机会和大家一起学习交流。今天,我说课的题目是《等式的性质》的教学内容。我将从以下几个方面进行我的教学思路说明。

本节课的主要内容是等式的基本性质以及运用等式的基本性质解简单的一元一次方程。本课是在同学们学习了一元一次方程的概念后的授课内容。等式的基本性质是解方程的理论支撑,它为下节的学习铺平了道路。因此本节课内容起到了承上启下的作用。

(1)知识与技能:探究等式的性质,并能利用等式的性质进解简单的一元一次方程。

(2)过程与方法:通过观察探究培养学生探索能力、观察能力,归纳能力和应用新知识的能力。

(3)情感态度价值观:培养学生参与数学活动的积极性、自信心.

教学重点:掌握等式的性质,根据等式性质解简单的一元一次方程。教学难点:由具体实例抽象出等式的性质,正确理解等式性质2中除数不能为0。

优点:在教学过程中我重视学生学习知识的生成规律,通过直观引导学生发现抽象的规律。重视数学思想和方法对的渗透,本节课运用到的数学方法有:从特殊到一般、类比、转化、化归等思想方法。

缺点:青少年学生都希望受到老师的表扬,有表现自我的机会,所以在教学中应抓住学生这一生理特点,用适当的语言能激发学生参与课堂的积极性。今后我需要在课堂用语上多下一些功夫。

在探究等式性质2的除法情况时,我运用的是在直观得出乘法的规律后,把乘法转化为除法来探究得出除法的规律,下次我会尝试采用利用天平直观演示得出这一规律。数学教学要给学生留出大量的习题训练时间,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇十

(一)、教材分析:

等式性质是学生了解了一元一次方程概念后的一章重点内容,是解方程必备知识,对解一元一次方程中的移项、合并同类项起着至关重要的作用。学生对等式的性质进行探索与研究过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。

(二)、教学目标:

a、知识目标:

通过网络教学让学生探索等式具有的性质并予以归纳达到解方程的目的

b、能力目标:

通过网上观察图片、实验和游戏,培养学生探索能力、观察能力、归纳能力和应用知识的能力以及动手操作能力

c,情感目标:

通过网络模拟实验和网络互评,增强合作交流意识、团队意识和创作精神。

(三)、教学重点:

新课标强调获得知识的过程远比知识本身更有价值,因而要注重发展学生应用的能力所以把本课重点确定为:等式基本性质的归纳。

(四)、教学难点:

根据7年级学生的年龄特征和认知特点,从特殊到一般,从具体到抽象,适合7年级学生思维能力,而本课难点决定利用等式基本性质解一元一次方程,为恰恰是这一特征的体现。

㈠教学方法:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:1,网络模拟实验操作法2,“看——议——讲”结合法3,归纳法4,讨论法5,网络游戏结合法6,成果展示法

㈡教学方法的理论依据:

(1)以学生为主体 学生参于数学活动为主线,培养学生创新能力和实践能力为主旋。

(2)由内向外原则 启发学生从书本知识回到社会实践,学以致用,落实教学目标。

(3)创感思维培养原则 新的世纪是一个创感的时代,不断培养学生的创感精神是新世纪给予数学教学新的要求,利用网络游戏、flash动画等不但提高学生兴趣,更培养学生的创作精神。

教学的宗旨是让学生学会学习,教师要为学生构建一个学习的平台,学生是独立行走的人

本课主要引导学生利用网络采取观察、模拟实验,猜想、探究、合作、互评、网络游戏、欣赏、创作等学习方法。

这些符合方法本阶段学生特点:1 、学生逻辑思维从经验型逐步向理论型发展。观察能力、记忆能力和想象能力也随着迅速发展。2,好动、好奇、好表现,是本阶段学生的特点 3,学生的创感思维在初一已处在一定阶段,对事物的认识已有一个层次,通过网络教育,加深学生对创感思维的培养.

本课课程设计如下:导入探索、新授知识,知识应用,归纳小结,布置作业

(一), 导入探索:

1:学生登入本局域网观看教师制作的网络课件图片

想一想,和尚将扁担放中间,那么两桶水有什么要求?

设计意图:通过形象导入能激起学生学习的欲望和探索的渴求,从中引出等式的概念。

(二),模拟试验

提问:你发现了什么,将天平与等式联系起来,你又有什么收获

设计意图:使学生对等式的性质有形象的认识,形成一个感性的阶段,更培养了学生操作能力,打开学习的思维空间,激发学习兴趣.

(三),归纳性质

(1)学生利用局域网观看教师课件,且自己总结出等式的性质。

设计意图:通过多媒体课件,引导学生有意识地去发现规律,掌握规律。培养学生动手操作的能力、实验观察能力和抽象概括的能力。提高学生的学习兴趣。

(2)知识应用:利用局域网,登入教师网络课件,完成如下题目,要求:在电脑上完成且将答案利用网络传给其它同学进行互改互评。

设计意图:让学生体会根据等式的基本性质从已知等式出发可以变形得到新的等式。为即将用等式解方程打下基础。网络互评,不但培养学生纠正错误能力和实际操作能力,更培养了团队精神.

(四)、讲解例题。

设计意图:题目的安排低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生的灵活性,多角度思考数学问题的方法。

(五)、课堂练习

学生以小组形式上网搜索用等式性质解方程的题目,并且解出.若遇问题可以用网络手段(qq,在线解答、发帖子等)寻求帮助,然后小组汇报你的收获与解题亮点.。

设计意图:充分利用网络资源为教学服务,提升学生的探究意识,培养学生寻找问题解决问题的能力,增强学生的团队精神. 学生是参于学习活动主体,体现活动民主,自由的课堂理念。

(六)、归纳总结

1,对自己说,你有什么收获?对老师说,你还有什么困惑?

2,观看网络资源《等式性质》开发的游戏和flash动画

设计意图:共同回顾学习内容,有助于学生将知识和方法系统化,条理化,同时兼顾以人为本的思想,关注学生的学习体会和感受。 利用等式性质开发的网络资源更是开拓了学生的视野,将知识运用于实践,培养学生的创作灵感

(七),布置作业

1, 作业根据难度分成abcd四种模型中,选择你最喜欢的一种做。

2,利用等式性质设计你喜欢的物品、图片或者游戏等,并将你的成果放在你的qq空间、个人主页或者老师的博客上。

设计意图:作业设计具有梯度性,设计abcd四个梯度作业,真正做到因材施教。第二题,将知识不限于书本,从书本走上社会实践,将知识结构灵活运用,既是新课标的要求,又提升学生创感思维。

1,利用网络中的图片资源和flash资源《和尚挑水》导入,动静结合,引起学生的学习兴趣,调动学生的学习积极性.使学生对于等式的概念有直观、形象的认识。

2,学生上网操作网上模拟天平训练,不但让学生更直观更贴切地巩固等式的性质,帮助学生解决本课重点即对等式性质归纳,更培养了学生的创感精神。

3,学生自己从网上搜索相关题目且采用网络互评,不但培养学生纠正错误能力和实际操作能力,更培养学生团队精神。帮助学生突破利用等式解一元一次方程这一教学难点。

4,总结中欣赏了网络资源flash动画和游戏,既加深了学生对等式性质的理解,又开拓了学生视野,培养了学生创新精神,更丰富了创感思维,又是对等式性质进行提升和巩固。

等式的性质说课稿一等奖 等式的性质说课稿冀教版篇十一

<

1、教材所处的地位和作用:本课内容是在学生认识了等式和方程的基础上进行教学的,它是今后学习解多步方程的基础,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。通过本节课的学习,引导学生探索,思考比较,发现规律,在实验的基础上,掌握等式的两个基本性质,并能利用等式的性质解简单的方程,为今后运用等式的基本性质解较复杂的方程打下基础。

2、教学内容:本节内容主要讲解等式的性质,在掌握等式的性质后,利用等式性质解简单的方程,再进行具体化练习,加深认识。本节分两课时完成,其中第一节课探索等式的性质,并对等式的构建和等式的性质进行具体化练习。

3、教学目标:教案对学习目标的分解是以"学生的全域发展"作为标准进行的,更注重了学生的主体性和目标的可操作性。学习目标首先被分解为"知识和能力"、"过程和方法"、"情感、态度与价值观".不仅解决了"学到什么"和"怎样学习"的问题,尤其解决了"喜欢学"和"主动学"的问题。

"教必有法而教无定法",只有方法得当,才会有效。有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索、观察与思考、合作交流是学生学习数学的重要方式。因此在本节课的教学中,我利用多媒体演示、实践操作、通过观察法、实验法、合作交流等教学方法,引导学生动手操作—独立思考—自主探索—合作交流,遵循由浅到深,由具体到抽象的规律,为学生创设一个宽松、民主、和谐的学习环境,让孩子们在探索交流中,感受、理解和应用等式的性质。

首先教师创造良好的环境,引导学生从喜欢的、已知的、熟悉的生活内容入手,让学生自己在特定的环境下不知不觉中建立一些等式与方程之间的联系。再通过一系列的实验活动使学生体验到等量的变化关系和等式的性质,并引导学生用数学语言全面总结出来,从而达到培养学生挖掘问题能力、交流能力和归纳总结与口头表达的能力。

1、创设情景,引发认知冲突

以前学生解方程习惯用加减法、乘除法互为逆运算的方式解方程,这样的思路只适宜解比较简单的方程,例如:x+3=5、3x=-12等,简单的一元一次方程的解用估算的方法或逆运算的方式我们都可以求出方程的解;而象19+28x=33x-1这样比较复杂的方程我们用上述方法还能求出它的解吗?我利用学生认知上的冲突引入新课。这样既激发了学生的学习兴趣又明确了本节课的教学目的。为等式性质的构建做好铺垫。

2.实验探索,从特殊到一般

等式性质的呈现属于实验探究型课,目的是要学生在活动中体验等量的变化关系和等式的性质。这里我分段逐步呈现等式的特性。首先出示平衡天平的图形,给学生一个天平平衡的印象,引导学生用字母构建一个等式,接着在上一个平衡天平的基础上,两侧同放一个三角形的符号表示物体的重量,让学生观察这时出现什么现象,同时提出问题:怎样做,两边才会保持平衡?通过学生实验得出使天平两边平衡的方法,并用字母式子表示实验的过程,再通过归纳,概括出对象的共同属性加以表述,接着通过几个练习加以巩固,然后借助上一个实验的经验和方法,进一步指导学生完成天平两边成倍变化的实验,最后根据实验情况观察归纳结论。同时注意在总结时先让学生根据实验,把自己所得到的结论叙述出来,然后教师再对学生的结论给予概括得到等式的性质。

上述讲授等式的性质用的是观察实验法,实验观察是科学研究的一种基本的方法,它是根据客观事物和现象找出它具有的客观规律,有助于发现一些数学事实,抽象出对象的属性,再通过归纳,概括出对象的共同属性加以表述。同时也体现了由特殊到一般的思维认知规律。

3.强化概念,指导学生尝试

关于等式概念、等式与方程的联系的引出,教法上采用充分利用学生已有的知识、练习回顾、交流的方式。等式的性质的教学,采用师生共同观察实验,让学生通过对直观图形的观察、实验和猜想,自已发现结论,并用总结的形式表述结论。等式性质的理解和掌握关键在于应用,只有通过大量练习来巩固和提高,练习的速度越快正确越高,说明知识理解和掌握的越好。因此在教学中得到等式性质后,就用三组尝试练习加强巩固和提高,这样既调动了学生学习的趣味性和主动性,增强了学生积极参与教学活动的意识,又很好地培养了学生的动手操作能力、观察能力、逻辑思维能力和总结归纳能力,同时,也向学生渗透了实践——认识——再实践——再认识的一种学习方法,使新旧知识技能得到了有机的结合。

本环节是对所学内容作全面的小结,并质疑问难,除小结所学的知识技能外,还对所用到的数学方法进行了概括,使学生既学习了知识,又培养了能力。同时也对使学生能进一步体会等式与方程联系、等式的性质。

布置作业主要是为了达到:

(1)巩固所学概念;

(2)发现和弥补教与学中的遗漏和不足;

(3)强化基本技能训练,培养学生良好的学习习惯和品质。

您可能关注的文档