倒数的认识(精选8篇)

  • 上传日期:2023-11-11 14:39:48 |
  • ZTFB |
  • 9页

幸福是自己给的,我们应该学会珍惜当下的每一天。怎样写一篇扣人心弦的作文?来听听我的建议吧。通过情感表达,我们可以更好地理解自己和他人的情感需求,并建立更好的人际关系。

倒数的认识篇一

教学内容教科书第28~29页例1、“做一做”及相关内容。

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

教学重点理解倒数的意义;求一个数的倒数。

教学难点理解“互为倒数”的含义。

教学准备教学课件、写算式的卡片。

教学过程具体内容修订。

基本训练,强化巩固。

(3分钟)1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。

(2分钟)请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。

(1分钟)通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。

(6分钟)1.观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。

(4分钟)让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。

(8分钟)1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。

倒数的认识篇二

一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

三、激情投入,挑战自我。

求一个数倒数的方法。

1和0倒数的问题。

离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)

就先聊到这儿吧?好,上课!

一、导入:

生:上下两部分调换了位置,变成了另一个字

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

二、合作探究:

(一)揭示倒数的意义

1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。

你认为哪些字或词比较重要?你是如何理解互为的?你能用举例子的方法来说明吗?(生答)

师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说老师是你的朋友,你是老师的朋友,我们俩是双方面的。

(二)小组探究求一个倒数的方法

1.出示例题2课件:下面哪两个数互为倒数?

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

师板书:求倒数的方法: 分数的分子、分母交换位置

同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

3.出示课件想一想。

我的发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为11=1根据乘积是1的两个数互为倒数,所以1的倒数是1)

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

4.探讨带分数、小数的倒数的求法

师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。


它的倒数




求这一类数的倒数的方法





带分数




2






小数




0.2






1.75






你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

发现1:带分数的倒数都(小于)本身;

发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

(三)学以致用:

师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

1.想不想检验一下自己学的怎么样?

请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

2.(课件出示)请你以打手势的形式告诉老师你的答案。

(四)全课总结

今天学习了什么?我们一起回顾总结出来好吗?

本节课一开始创设让学生找朋友的情境,通过此活动帮助学生理解互为的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。

倒数的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对倒数的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

倒数的认识篇三

这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。

教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。

练习中,通过“教、扶、放”使讲练有机结合,既加强了双基,又开发了智力。

倒数的认识篇四

教学目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

教学重点:理解倒数的意义,掌握求倒数的方法。

教学难点:熟练写出一个数的倒数。

教具准备:多媒体课件。

教学过程:

一、情境导入。

1、口算。

5/12×2/5=15/7×7/5=11/8×8/13=。

5/21×1/5=3/16×7/3=8/21×7/8=。

先独立考虑,再指名口算订正。

2、比一比,看谁算得又对又快:

2/3×3/2=2×1/2=11/8×8/11=。

1/10×10=7/9×9/7=1/7×7=。

6/5×5/6=1/5×5=22/35×35/22=。

同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

二、合作探索。

1、小组合作交流:

(1)和同桌说一说你的发现。

(2)请你自身举出3个像上面这样的乘法式子。

小组代表说说有什么发现。指名说说自身举出的例子。

教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)。

教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

阅读教材,进一步理解。

教师:现在谁来说一说自身是怎样理解倒数的?

同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

2、强化概念理解。

你认为下面这两种说法是否正确?

(1)2/3是倒数。

(2)得数是1的两个数互为倒数。

同学先独立考虑,再口答,说明理由。

将本文的word文档下载到电脑,方便收藏和打印。

倒数的认识篇五

教学目标:

达能力的提高。

情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。教学重点:理解倒数的意义和怎样求一个数的倒数。教学难点:正确理解倒数的意义及0为何没有倒数。

教学过程:

一、情境导入,引出问题。

1.风景倒影图。

2.游戏,按规律填空。

吞———吴呆———。

3/8———(/)10/7———(/)。

(1)学生观察填空,指名回答,并说出是怎么样想的。

(2)师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)。

3.学生观察板书的几组分数,看看每组中的两个数有什么特点?根据预习单小组交流后汇报。

教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)。

a:分子、分母相互调换位置的两个数叫做互为倒数。

b:乘积是1的两个数叫做互为倒数。

师生根据学生汇报归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)。

二、合作探究、解决问题。

大家知道了什么是倒数,在看看倒数的意义,你发现哪些词我们要重点理解?

引导学生理解“两个数”“乘积是1”“互为”

教师重点指导“互为”,学生先说说自己的想法,师根据情况可以加入握手的游戏引导。

倒数是两个数的关系,这两个数是互相依存的,如果是一个数就不存在倒数的关系。

2.根据说法理解倒数。

(1)观察3/8与8/3,说说哪两个数互为倒数?还可以怎么样说?

(2)谁能说说10/7与7/10中谁和谁互为倒数?也可以怎么样说?

(3)学生练习说。

2.探究求倒数的方法。

学习例1:写出7/8、5/2的倒数。

教师根据预习单让学生说说自己找倒数的方法。总结出分子、分母交换位置可以找出一个数的倒数。

(2)师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?那么怎么样求整数、小数的倒数呢?选择一种,在小组内探究。

a:学生选择一种研究,教师巡视指导。

b:学生交流汇报,教师分别板书一例。

c:引导学生概括求倒数的方法。

(3)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。

1×()=1,所以1的倒数是1。而0×()=1呢?

1的倒数是它本身,0没有倒数。

求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

三、巩固联系、拓展深化。

1.下面哪两个数是互为倒数。

4/3,7/6,8,6/7,3/4,1/8。

2.写出下面各数的倒数。

4/11,16/9,35,15/8,1/5。

学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。

3.争当小法官,明察秋毫。

(1)1的倒数是1。(2)所有的数都有倒数。

(3)3/4是倒数。(4)a的倒数是1/a。

(5)因为0.5×2=1,所以0.5与2互为倒数。

(6)7/5的倒数是7/2。

(7)真分数的倒数都大于1。(8)假分数的倒数都小于1。

(9)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。

4.填空。

3/4×()=17×()=1。

2/5×()=()×4=5/4×()=0.5×()=1。

5.游戏:找朋友。

一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。

(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

四、总结反思、评价体验。

这节课你们有什么收获?还有什么疑问?

(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

五、布置作业。

“倒数的认识”是在学生掌握了整数乘法、分数乘法的.意义和计算法则、分数乘法解决问题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。

本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,如意义的引入中,我在学生预习的基础上,安排学生交流互学,发现“两个数乘积是1”这一规律,让学生自己研究学习例子,给学生提供放手的思维空间,并尊重学生的自主性。在教学的设计中我还结合实际情况,借助语言学科与数学学科之间的联系为切入点,由文字的规律引发学生数学思维的火花;实现社会、语、数的整合。在教学中我们还有允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切知识都要由学生自己获得或由他们发现,如“1”和“0”这两个特例,让学生独立思考,分组探讨,教师及时引导。得出1的倒数是1,而0没有倒数的结论。让学生从讨论中充分展示了自己的能力,调动学生的积极性,利于学生对问题的思考解决。我认为这样做不仅增添了课堂活力,提高了学生的注意力,而且还让学生经历了探索的过程,解决了学生的困惑,更让学生体会到了成功了快乐”。

“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

在课后的巩固练习中,我设计了“填空,判断”、“连线”等题型,根据重点内容和关键点进行了多层次的练习,帮助学生巩固新知,活跃思维,让学生获得愉悦的情感体验。

最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义,好像时时都是我引导学生在我思维的引导下,被动的学习知识。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新改变了教学理念,我觉得只有立足于学生的设计才是好的设计,只有学生自己通过观察、比较、归纳总结出倒数的意义,学生自己通过参与整个学习过程后才会有真正的收获。所以在今后的教学中,我们应该更好考虑学生学的情况。当然我的教学中还有很多不足之处,希望各位老师提出宝贵意见。

倒数的认识篇六

1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

:理解倒数的意义,学会求倒数的方法。

:发现倒数的一些特征。

课件

教学过程

特色设计

通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

一、猜字游戏引入新课

找找下面文字的构成规律

呆———杏 土———干吞———吴

按照上面的规律填数

——( ) ——( ) ——( )

能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

二、新知探究

(一)探究讨论,理解倒数的意义。

1.课件出示算式。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。

我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2.出示倒数的意义:乘积是1的两个数互为倒数。

3.你是怎样理解互为倒数的呢? 能举例吗?

(二)深化理解。

1.乘积是1的两个数存在着怎样的倒数关系呢?

2.互为倒数的两个数有什么特点?

3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1.讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2 两个分数的倒数。

学生试做讨论后,教师将过程 。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

三、巩固练习

(一)完成教材第28页的“做一做”

(二)完成教材第29页练习六的第1-5题。

四、课堂小结

今天我们学习了有关倒数的哪些新知识? 板书设计

倒数的认识篇七

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

倒数的认识篇八

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

:理解倒数的意义,求一个数的倒数。

:,从本质上理解倒数的意义。

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/37/15×15/75×1/50。25×4。

2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)。

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

3/4×()=1()×9/7=1。

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)。

你是怎样想的?如0。5、1。7。

3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)。

2、会找了吗?你能找到下列数的倒数吗?

3/54/967/211。251。20学生独立完成,然后交流。

(1)先说说你找到的这个数的倒数的,你是怎样找的?

(2)在找这些数的倒数中,你有什么想说的?

3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)。

四、巩固深化。

1、做一做,写出下面各数的倒数,并说说你是怎样想的。

2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。

3、判断题。书上第25页的第3题。

补充:(3)2/5×5/2=1,那么2/5是倒数。

(4)任何一个数都有倒数。

(5)如果一个数是a(0除外),那么这个数的倒数就是1÷a。重点讨论:一个数的倒数一定比这个数小。

那么哪些数的倒数比原数小、大或相等。

4、完成作业:作业本第12页的1、2、3题。

五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?

结合自己的个人研究重点:1、关注数学概念的内涵和外延的关系。2、关注学生学习数学过程中的思维活动。

先给自己提几个问题?

1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?

倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。

内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。

2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。

于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。

您可能关注的文档