最新国际大学生数学建模论文(汇总11篇)

  • 上传日期:2023-11-19 09:40:50 |
  • ZTFB |
  • 12页

从工作总结中可以看出,我们需要更加高效地管理时间。写总结时要尽量客观公正,对自己的优点和缺点都要有清醒的认识。下面是一些写作总结的技巧和方法,供大家参考。

国际大学生数学建模论文篇一

长期以来,我国的数学教学中一直普遍存在着重结论而轻过程、重形式而轻内容、重解法而轻应用等弊端,不注重学生数学能力和素质的培养;过分强调对定义、定理、法则、公式等知识的灌输与讲授,不注重这些知识的应用,割断了理论与实际的联系,造成学与用的严重脱节,致使在我们的数学教育体制下培养出来的学生的能力结构都形成了一种严重的病态,主要表现在:数学理论知识掌握得还可以,但应用知识的能力很差,不能学以致用,缺乏创造力和解决实际问题的能力,这些问题使我们的学生在走向工作岗位时上手速度慢,面对新的数学问题时束手无策,不能将所学的知识灵活运用到实际中去。显然,这种教育体制和理念与现代教育理念是背道而驰的,是必须抛弃的。开展数学建模教学或数学建模竞赛,能够培养学生各方面的综合能力,提高学生的综合素质,对于当前数学教育教学改革有着极为重要的现实意义。

1数学建模能够丰富和优化学生的知识结构,开拓学生的视野。

数学建模所涉及到的许多问题都超出了学生所学的专业,例如“基金的最佳适用”、“会议筹备”、“地震搜索”等许多建模问题,分别属于不同的学科与专业,为了解决这些问题,学生必须查阅和学习与该问题相关的专业书籍和科技资料,了解这些专业的相关知识,从而软化或削弱了目前教育中僵死的专业界限,使学生掌握宽广而扎实的基础知识,使他们不断拓宽分析问题、解决问题的思路,朝着复合型人才和具备全面综合素质人才的方向发展。

2数学建模可以培养学生利用数学知识解决实际问题的能力。

数学建模要求建模者利用自己所掌握的数学知识及对实际问题的理解,通过积极主动的思维,提出适当的假设,并建立相应的数学模型,进而利用恰当的数学方法(现有的或新创造的)求解此模型,并对解做出评价,必要时对模型做出改进。这一过程包括了归纳、整理、推理、深化等活动,因此把数学建模引入课堂教学,必将改变目前数学教学只见定义、定理不见问题背景的局面,必将改变知识僵化、学而不用的局面,从而调动了学生学习的积极性,培养了学生解决实际问题的能力。

3数学建模能够培养学生的创造力、想象力、联想力和洞察力。

数学模型来源于客观实际,错综复杂,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,必须积极动脑,而且常常需要另辟蹊径,在这里,常常会迸发出打破常规、突破传统的思维火花,通过这种实践活动,可以培养学生的创造能力,促使他们在头脑中树立推崇创新、追求创新和以创新为荣的意识。在从实际问题中抽象出数学模型的过程中,须把实际关系转化为数学关系,这要求他们敢于想象和联想,此外他们还要从貌似不同的问题中抓住其本质的和共性的东西,这将培养他们把握问题内在本质的能力,即洞察力,可以说,培养学生的这些能力始终贯穿在数学建模的整个过程。

4数学建模可以培养学生熟练地运用计算机的能力。

5数学建模可以增强大学生的适应能力。

通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。不仅如此,由于建模决不是一件轻而易举的事,需要学生对实际问题进行反复多次的研究、分析、观察和对模型进行反复多次的计算、论证及修改等,整个过程是一个非常艰辛的探索过程,这可以培养学生高度的责任感、坚韧不拔的毅力、遭遇挫折后较强的心理承受能力以及孜孜不倦、精益求精的探索精神,使他们具有良好的心理素质与精神状态。同时数学建模一般都是由几个人组成的团队来完成的,其成功与否,完全取决于大家的密切合作,既要合理分工,又要密切配合,这样又可以培养学生的组织管理能力、协调能力和相互协作的团队精神,这些对他们今后走向工作岗位都是大有裨益的。

此外,数学建模从教育观念、内容、形式和手段都有一定的创新,对数学教学改革有积极的启示意义。首先,数学建模突出了教与学的双主体性关系。教师要根据学生的学习兴趣、能力及特点,不断修正自己的教育内容和方法。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。这种双主体的关系是对传统教学方式的根本突破。

其次,数学建模促进了课程体系和教学内容的改革。长期以来,我们的课程设置和教学内容都具有强烈的理科特点:重基础理论、轻实践应用;重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,这迫使我们调整课程体系和教学内容。比如可增加一些应用型、实践类课程等等;在其余各门课程的教学中,也要尽量注意到使数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容也得到了更新。

再次,数学建模增加了教师对新兴科技知识的传授,拓宽了学生的知识面。这些特点对于目前数学教材中存在的内容陈旧、知识面狭窄及形式呆板等问题,具有借鉴作用。数学建模的试题通常联系新兴的学科,在科学技术迅猛发展的今天,各种新兴学科、边缘学科、交叉学科不断涌现,广博的知识面和对新兴科学技术的追踪能力是获得成功的关键因素之一。

数学建模不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。

【参考文献】。

[1]颜筱红,粱东颖。高职院校数学建模教学的研究[j].广西教育,2013(2):54,134.

[3]李大潜。中国大学生数学建模竞赛[m].2版。北京:高等教育出版社,2001.

[4]谢金星。2008高教社杯全国大学生数学建模竞赛[j].工程数学学报,2008(25):1-2.

国际大学生数学建模论文篇二

计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。数学建模所解决的问题不止现实的,还包括对未来的一种预见。数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。

1.1数学建模引进大学数学教学的必要。教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。1.2数学建模在大学数学教学中的运用。大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。

2.数学建模对当代大学生的作用。

2.1数学建模对数学学科和其他学科学生的巨大影响力学习数学建模,能够使一个单独的数学家变成经济学家,物理学家还有金融学家,甚至是艺术家,只要正握数学建模就能指导学生通过掌握数学建模的思维和方法向其他领域学习和进步。数学建模成为连接数学和其他领域的纽带,是当今数学科学在其他领导应用的桥梁,是数学技术转化为其他技术的途径,数学建模在学生中越来越受到关注和欢迎,越来越多的学生开始学习数学建模,尤其是数学界和工程界的学生,这成为当今学生成为现代科技工作者必须掌握的只是能力之一。

2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。通过数学建模的学习和应用,激发大学生学习数学和应用数学的能力,运用数学的思维和方法,利用现代计算机科学,来解决数学及其他领域的问题。

3.数学建模对大学数学及其他学科教师的作用。

数学建模引入大学数学教学,这是时代的进步,是时代对当代大学教师提出的新要求,尤其是大学数学教师,其不再停留在以往的单纯的数学知识讲授方向,而是将数学科学作为基础,引导当代大学生发散思维,发挥主观能动性,从而学习数学科学,并运用数学科学解决现实问题。在这个过程中大学教师的专业知识得到提高,其创新精神也得到了极大的丰富。大学数学教师不止完成数学教学,更重要的是培养了高科技的人才,这对大学数学教师的社会地位也有了相应的改变,在尊重人才,尊重科学的氛围中,大学数学教师及其他学科的教师得到了鼓舞,得到了进步,得到了认可。数学建模越来越重要,关于数学建模的各种国内国际大赛频频举办,这对大学数学教师在知识,体力和创新性上都提出新的要求,为了更好的参与数学建模比赛,大学数学教师投入更多的时间和经历在学生教育和数学建模中,他们成为真正的台前和幕后的指挥者。

随着现代大学学科的丰富,尤其是计算机科学的广泛应用,大学数学教学的跨时代发展,数学建模成为各个高校数学教学的重点内容,数学建模教学吸纳数学家,计算机学家等多个学科专家的意见,从而为培养出综合行的高科技人才做好充分的准备。可以说数学建模教学是当今大学数学教学的主旋律,是数学科学和其他科学进步发展的方向和原动力。

参考文献:

[1]李进华.教育教学改革与教育创新探索.安徽:安徽大学出版社,20xx.8.

[2]于骏.现代数学思想方法.山东:石油大学出版社,1997.

国际大学生数学建模论文篇三

摘要:数学建模作为现代应用数学的一个重要组成部分被越来越多的人所重视。本文描述数学建模课程及数学建模竞赛在培养大学生各种能力中的作用。

关键词:数学建模;竞赛;大学生;能力。

一、引言。

数学建模是运用数学的语言和方法,去描述或模拟实际问题中的数量关系,并解决实际问题的一种强有力的教学手段。数学建模是应用数学的语言和方法解决实际问题的过程,也是一个培养大学生各种能力的综合过程。

大学生数学建模竞赛最早是1985年在美国出现的。1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的大学生开始参加美国的竞赛。自1994年起,教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届,这项活动被教育部列为全国大学生四大竞赛之一。随着全国大学生数学建模竞赛的广泛影响,越来越多的高校组织队员参加该项竞赛,这项竞赛的规模以平均年增长25%以上的速度发展。2008年全国有31个省/市/自治区(包括香港)1,023所院校、12,846个队、38,000多名来自各个专业的大学生参加竞赛,比2007年新增院校15所。2009年全国有33个省/市/自治区(包括香港和澳门特区)1,137所院校、15,046个队、45,000多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)。

20世纪八十年代以来,我国各高等院校相继开设数学建模课程。数学建模课程是在高等数学、线性代数、概率与数理统计之后,为实现理论和实践一体化、进一步提高运用数学知识和计算机技术解决实际问题,培养创新能力所开设的一门广泛的公共基础课。教育必须反映社会的实际需要,数学建模课程进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。

素质教育是新世纪高校高等数学教育改革的一个重要方向。在大学校园中,数学建模课程的开设及数学建模活动的开展,能有效地激发大学生学习的兴趣和积极性,使大学生掌握准确快捷的计算方法和严密的逻辑推理,培养大学生用数学工具分析解决实际问题的能力,是实施素质教育的一种有效途径。

二、数学建模对大学生能力的培养。

通过数学建模课程的教学与参加数学建模竞赛的实践,使我们深刻感受到数学建模过程,不仅是对大学生知识和方法的培养,更是对当代大学生各种能力的培养有着深远的意义。

1、有利于提高学生分析解决问题的能力。数学建模教学强调如何把实际问题转化为数学问题,要求建模者利用自己所掌握的数学知识及对实际问题的理解提出合理的假设,从一个个实际问题中抽象出数学问题,建立相应数学模型,利用恰当的数学方法来求解此模型,解决实际问题,并对模型进行评价改进。因此,数学建模教学为大学生架设了由抽象的数学理论知识通向具体的实际问题的桥梁,是使大学生的数学知识和应用能力共同提高的有效方式。大学生通过参与数学建模及竞赛活动,能切身体会到学习数学的实用价值,这是传统教学无法达到的效果,从而激发了大学生学习数学的兴趣,提高了学生分析解决实际问题的能力。

2、有利于培养大学生应用数学的能力。数学建模通过积极主动的发散性思维,培养学生“应用数学”的能力。这是数学教育的根本任务,当然应当成为数学应用于教学目的中的重中之重。应用数学的能力是一种综合能力,它离不开数学运算、数学推理、空间想像等基本的数学能力,但它主要侧重于从实际问题中提出并表达数学问题的能力,运用并初步构建数学模型的能力,对数学问题及模型进行变换化归的能力,对数学结果进行检验和评价、阐释和处理的能力。数学建模过程包括了归纳、整理、推理、深化等过程,因此把数学建模引入课堂教学,学生能够学会如何利用所学知识构造数学模型,求解数学模型,从而解决实际问题,并且做出必要的评价与改进,从而加深对数学知识的理解,提高了应用数学的能力。

3、有利于学生抽象概括能力的培养。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化,抽象、概括为合理的数学结构的过程。抽象是抽取事物的本质属性,使它与其他属性分开;概括是将同类事物的相同属性结合起来。抽象和概括是紧密联系的,只有抽象出事物的本质属性才能进行概括,如果思维不具有概括性也无从进行抽象。抽象能力是指在建模过程中能抛弃无关的非本质因素,从本质上看问题,自觉地进行层层的抽象概括,建立数学模型的能力。数学建模过程使学生对复杂的事物,有意识地区分主要因素与次要因素,本质与表面现象,从而抓住本质解决问题。它有利于提高学生思维的深刻性和抽象概括能力,它主要体现在学生能善于从复杂的事物中把握事物的本质及规律,使学生面对具体问题能有条理地在简约状态下进行思考,并有助于真理的发现。

4、有利于提高大学生自学的能力。数学建模以学生为主,教师事先设计好问题,启发、引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论。学生通过学习数学建模课程,参加数学建模竞赛,需要自学他完全不了解或知之不多的有关学科的专业知识,在这个过程中,有助于培养大学生获取新知识的主动精神,有利于提高大学生的自学能力。

参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、优化、微分方程、计算方法、层次分析法、数学软件包的使用等等讲座,用的学时并不多,多数是启发性的讲一些基本的概念和方法,主要是靠学生自己去学,充分调动学生们的积极性,充分发挥学生们的潜能。同时,在比赛的短短3天时间里,要查阅大量的资料,取其精华,从中寻找到所需要的资料,收集必要的信息,这也必须要求大学生掌握科学的方法。这种能力必将使大学生在未来的工作和科研中受益匪浅。

5、有利于培养大学生的洞察力和想像力。洞察力是人们对个人认知、情感、行为的动机与相互关系的透彻分析。通俗地讲,洞察力就是透过现象看本质,变无意识为有意识。就这层意义而言,洞察力就是学会用心理学的原理和视角来归纳总结人的行为表现。洞察力是指深入事物或问题的能力,更多的是掺杂了分析和判断的能力,可以说洞察力是一种综合能力。

想像力是人在已有形象的基础上,在头脑中创造出新形象的能力。in有一句名言:想像力比知识更重要,因为知识是有限的,而想像力包括世界的一切,推动着社会进步,并且是知识的源泉。这句话可以认为是开设“数学建模”这门课程的一个指导思想。

数学建模的模型假设过程就是根据对实际问题的观察分析、类比、想像,用数理建模或系统辨识建模方法作假设,通过形象思维对问题进行简单化、模型化,做出合乎逻辑的想像,形成实际问题数理化的设想。例如,2006年全国大学生数学建模竞赛中c题“易拉罐的最优设计问题”,第四问要求大学生利用对所测量的易拉罐的“洞察力和想像力”,做出自己的关于易拉罐形状和尺寸的最优设计。大学生做题的过程,无异于是对大学生洞察力和想像力培养的真实体现。

6、有利于提高大学生利用计算机解决问题的能力。首先,计算机是数学建模的得力助手。数学建模过程中,大多数问题灵活多变,很多模型的求解都面临着大量的计算;其次,所建模型是否与实际吻合,常常要用模型的解来判断,而且这种工作,在建立一个实际问题的数学模型中经常要重复多遍。因此,熟练使用计算机计算数学问题是对学生的必须要求。我们倡导大学生尽量利用计算机程序或某些专用的数学应用软件如mathematica、matlab、lingo、mapple等,以及当代高新科技成果,将数学、计算机有机地结合起来去解决实际问题。数学建模教学中结合实验室上机实践,计算机的应用不仅仅表现在数学建模中模型的简化与求解,而且给大学生提供了一种评价模型的“试验场所”,这就有助于培养大学生利用数学软件和计算机解决实际问题的能力。

7、有利于培养大学生的创新能力。创新是指人类为了满足自身的需要,不断拓展对客观世界、自身任职与行为过程和结果的活动。创新能力指人在顺利完成以原有知识经验为基础的创建新事物活动中表现出来的潜在心理品质。我们在教学中应给学生留有充分的余地,鼓励学生开阔视野、大胆怀疑、勇于进取、勇于创新,让学生充分发挥想像力,不拘泥于用一种方法解决问题,从而培养学生的创新能力。在数学建模竞赛中,对给出的具体实际问题,一般不会有现成的模型,这就要求大学生在原有模型的基础上进行大胆的尝试与创新。创新是一个民族的灵魂,只有创新才能发展。而创新教育是以全面、充分发展学生的创造力为核心的教育,它是适应经济时代发展的教育思想。数学建模课程就是培养创新能力的一个极好的载体,数学建模的过程是一个创造性的过程,我们应该充分发挥它在创新能力培养中的作用,它为培养大学生创造性思维能力和创新精神提供了广阔的空间。

8、有利于提高大学生论文写作和表达能力。数学建模成绩的好坏、获奖级别的高低与论文撰写有着密切关系,数学建模的答卷是评价的唯一依据。建模方法独特、结果出色,但如果不能做到结构清晰、重点突出、文字流畅,也将会失去获奖的机会。写好论文的训练,是科技写作的一种基本训练。通过建模竞赛,学生能够学会如何更加准确地阐述自己的观点。所以,数学建模对培养学生的论文写作能力和表达能力,都起到了积极的作用。

9、有利于培养大学生的合作交流能力和团队合作精神。数学建模的问题涉及各个领域,都有一定的深度和广度,所需知识较多,数学建模课程广泛地采用讨论班的教学方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,与此同时,同学之间互相平等,互相尊重,培养了学生合作交流的能力。

参考文献:

[1]姜启源,谢金星,叶俊。数学模型[m].高等教育出版社,2004.

[2]赵静,但奇。数学建模与数学实验[m].高等教育出版社,2004.

[3]刘来福等。数学模型与数学建模[m].北京:北京师范大学出版社,1999.

国际大学生数学建模论文篇四

摘要:在当今社会数学已经渗透向生活的各个领域,概率、比率、机会、误差、图像、逻辑、程序等等数学概念已进入日常生活;各行各业都在数量化、数字化、数学化,用到的数学知识越来越多。但传统高等数学教学注重训练学生的逻辑推理能力,而没有注意训练如何从实际问题中提炼出数学问题以及如何用数学来解决实际问题,本文从建模思想的重要性、教育现状和改革思路以及已有的建模教学成果三个方面探讨数学建模思想在高等数学教学中的作用。

关键词:数学建模;高等数学教学。

一、引言。

11世纪的数学家、物理学家和天文学家高斯曾说:“数学是科学之王。”数学贯穿于所有科学理论之中,任何科学理论如果不应用数学,它就是粗糙的,不懂数学的人是不能进行深层次的科学思维的。

在当今社会数学已经渗透向生活的各个领域,概率、比率、机会、误差、图像、逻辑、程序等等数学概念已进入日常生活;各行各业都在数量化、数字化、数学化,用到的数学知识越来越多。从科学技术的角度来看,大量与数学相关的交叉学科相继出现出现,迅速发展例如:数学化学、数学生物、数学地质学、数学心理学、数学语言学、数学社会学等。有研究者认为高科技技术本质上就是一种数学技术。例如财物、会计专业软件包都是大量应用现有的相关数学知识,开发数学模型以及应用数学技巧、方法的结果。高等数学对于培养大学生数学思维、数学意识提升逻辑思维能力有重要意义。

传统高等数学教学注重训练学生的逻辑推理能力,而没有注意训练如何从实际问题中提炼出数学问题以及如何用数学来解决实际问题,其后果是学生们学了不少数学,但不会用,为此在高等数学的教学过程中如何提升教学效果成为教学改革的一个重要研究问题。当前高等数学教学不重视应用性,很多学生数学的学习仅仅以通过考试为目的,数学成为抽象的、枯燥的、无实际用途的科学。数学建模则以“数学的应用与模型化”为主线,重视数学建模意识和应用能力的培养。

数学建模的思想在高等数学发展的历程中很早就有,但是现代教育技术环境的发展和大学生数学建模赛事的举行为数学建模的教学发展提供了契机和更好的外部环境条件,同时也对现代高等数学的教学提出了新的要求。数学建模对于培养大学生数学能力的作用的相关研究较多,研究结果表明:数学建模能够提升大学生理论联系实际的能力、可以提升思维能力、概括能力、归纳能力、创新能力。

三、数学建模教育现状和改革思路。

全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2012年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1284所院校、21219个队(其中本科组17741队、专科组3478队)、63600多名大学生报名参加本项竞赛。竞赛能全面反应学生解决实际问题的能力、数学创造力、计算机使用能力、书面表达写作能力,特别强调创新意识、团队精神。已经成为我国大学生创新能力培养和提升的重要大型学术赛事之一。

郑州航空工业管理学院,在2008年至2010年累计有67支队伍,共计201名学生才加了全国的大学生建模大赛,并取得了良好的成绩荣获省级一等奖6项、省级二等奖8项、省级三等奖20项,但参赛学生来自全校各个不同院系,较多集中在数理与统计学院。

综上可见:通过数学建模对提升高等数学教学效果的实践研究,可以为高等数学的教学找到一条新模式,进而提升学生综合素质,培养出能更好适应社会的应用型专业人才。另外,对于数学建模教学实践还可提升高校的数学建模竞赛成绩,提升学校知名度,并影响到更多的学生,使学生们真正热爱数学学习,全面提升个人素质。

关于数学建模与提升提升高等数学教学效果的实践研究的相关研究主要集中在以下几个方面:

(一)数学建模的教学方法研究。

许多研究者对数学建模的教学从不同角度和方面进行探讨,一些比较有影响的研究有:黄世华等,针对高专院系的建模教学现状,提出从指导思想、教学理念、教学内容、教学方法、考核方式出发,课程教学应采取以问题驱动研究式为主,以知识驱动讲授式为辅的教学方法才是行之有效的。刘浩等,认为数学建模应加强数学思维的互动训练,培养创新精神;加强信息素养的训练,开拓知识面;注重团队训练,提高团队合作意识。杨小钟讨论数学建模教育对高校数学教育改革的重要意义,以及存在的问题并提出了改变教学理念的改进措施。还有研究者通过具体的模型教学,讨论了建模思想的培养和相关的教学实践心得。柴中林、王航平等针对美国大学生数学建模竞赛提出了一些培训策略。

(二)数学建模教学意义研究。

对数学建模的意义研究主要集中在数学建模与大学生能力培养和非智力因素发展等方面。沙元霞等提出学校可以通过增强数学建模意识、改进数学建模思想方法、提高数学建模能力,深化教育教学改革,培养数学应用型人才。蒋莉分析了数学建模对培养大学生数学素质的作用,并提出数学建模培养了大学生的抽象思维能力,提高了大学生的创新能力。杨太文等,研究数学建模竞赛与大学数学课程间的效用发现数学建模的学习可以明显提高学生的数学学习能力。

总之,当前我国大学生数学建模的教学水平相对落后,数学建模思想和高等数学相结合,可以提升学生的学习兴趣,进而促进学生主动学习和思考,养成独立思考学习的好习惯,从而培养学生的创新意识。数学建模大赛这个平台,有给了学生一个团队协作的机会,让学生能够提升自己的理论联系实际能力、应用写作能力和创造力。数学建模思想可以提高教学效果,而高等数学课程的开展为数学建模奠定了理论基础,两者相辅相成,密不可分。

参考文献:

[1]范英梅。高等数学、计算机与数学建模教学的关系分析[j].广西大学学报(自然科学版),2004,9.

[2]何伟。在高等数学教学中如何体现数学建模的思想[j].数学的实践与认识,2003,10.

[3]马戈等。现代教育技术环境下高等数学教学改革的实践与思考[j].高等数学研究,2004,5.

[4]蒋莉。浅谈数学建模在培养大学生数学能力的作用[j].理论探索,2012,2.

[5]沙元霞。基于数学建模的应用型人才培养[j].长春师范学院学报(自然科学版),2012,9.

[6]黄世华等。数学建模教学的方法研究[j].科教研究,2012,2.

[7]刘浩,杨艳梅。大学生数学建模教育的几点思考[j].数学教育与研究,2012,4.

[8]杨小钟。初探高校数学建模课程改革[j].大观周刊。2012,8.

[9]徐茂良。在传统数学课中渗透数学建模思想[j].数学的实践与认知。2002,7.

[10]杨进峰。经济应用数学教学研究[j].陕西教育,2012,7.

[11]吴秀兰等。浅议数学建模思想如何与高等数学教学相结合[j].吉林省教育学院学报。2012,9.

[12]柴中林等。国际大学生数学建模竞赛培训策略的一些探讨[j].科技视界,2012,9.

[13]杨太文等。数学建模竞赛与大学数学课程间的效用[j].高等教育,2012,10.

国际大学生数学建模论文篇五

数学建模解决的都是与我们生活息息相关的实际问题,很多都是当前社会比较关注的热点问题,比如开放性小区的建立,人工智能机器人在工作中的应用,这些问题开放性比较强,有明确的目的和要求,但它没有唯一的结果和方法。因此留给学生很大的创新空间,使学生对数学产生了极大的兴趣,他们发现这几年学习的高数、线性代数、概率论与数理统计终于派上了用场。数学建模课程会结合《高等数学》,《线性代数》,《概率论与数理统计》等数学基础学科,还会经常涉及到物理,工程,经济,金融,农林等各个领域各个学科,从不同的学科中找最热门最真实的案例进行教学,这要求学生有很强的自学能力,要不得学习新知识,新思路和新方法,让学生结合所学的数学知识把自己学科的专业知识转化成数学模型,让数学充分发挥它的优势,以达到培养学生的创新能力,更重要的是对学生的知识体系起到了完善的作用。在整个竞赛中从模型建立与求解到写作,都是由学生独立完成,充分发挥了他们的自主性和创造性。

2.数学建模能培养学生团队合作精神和创新创业能力。

数学建模竞赛是由三个人组成一个小团队共同处理一个问题,在这个团队中每个人都各有分工,有的人擅长建立模型,有的人擅长计算机编程求解模型,有的人擅长写作,这三个人缺一不可,任何一个人都发挥着举足轻重的作用。通常我们还会设一个队长能协调队员之间的关系和对题目的把控。每个人都有不同的性格,能力,学识,知识结构,在做题的过程中会产生不同的想法,比如在模型的建立中,数据的处理过程中,算法的选取,编程语言的选取,写作的过程中都会有很多的不同,所以每个成员都要有团队精神、相互信任、相互沟通、相互尊重、取长补短、充分发挥集体的力量共同完成一个项目。同时每年无论在培训还是正式比赛过程中由于高强度的脑力活动,强大的心理压力以及队员之间的不和睦都会造成中途退赛,这样无疑是最可惜的。所以,在竞赛中除了培养学生的创新意识和团队合作精神,还培养了大家的心理承受能力,强大的意志力以及与他人沟通交往的能力,是对自己综合素质的一个提高,对未来考研、出国、就业都有很大的帮助。

3.数学建模培养学生的创新创业的.综合能力。

通过在大二一年的数学建模选修课,以及假期的集中培训培养了学生的创新创业能力,很大程度上提高了他们思考问题解决问题的能力等综合素质,同时还培养了他们应用计算机去处理各种问题的科技能力。他们学会了各种软件、语言,很多同学会数据挖掘、机器学习以及人工智能,这些都是未来科技的前沿,科技创新是企业发展的动力,现代教育不能只停留在教授学生理论知识的学习,更重要的是理论与实践的结合,走产学研相结合的道路,数学建模很好的把理论与实践相结合,激发学生科研热情,提高学生科研积极性,激发了学生的创新创业能力,为以后工作生活奠定了扎实的基础。为了让建模更好的服务学生,我们将不断的努力,探索和改进培养模式和方法,争取通过数学建模平台使更多的同学受益,培养出更多的具有创新创业能力的大学生。

参考文献:

[2]韦程东.数学建模能力培养方法研究[m].北京:科学出版社,.

国际大学生数学建模论文篇六

长期以来,我国的数学教学中一直普遍存在着重结论而轻过程、重形式而轻内容、重解法而轻应用等弊端,不注重学生数学能力和素质的培养;过分强调对定义、定理、法则、公式等知识的灌输与讲授,不注重这些知识的应用,割断了理论与实际的联系,造成学与用的严重脱节,致使在我们的数学教育体制下培养出来的学生的能力结构都形成了一种严重的病态,主要表现在:数学理论知识掌握得还可以,但应用知识的能力很差,不能学以致用,缺乏创造力和解决实际问题的能力,这些问题使我们的学生在走向工作岗位时上手速度慢,面对新的数学问题时束手无策,不能将所学的知识灵活运用到实际中去。显然,这种教育体制和理念与现代教育理念是背道而驰的,是必须抛弃的。开展数学建模教学或数学建模竞赛,能够培养学生各方面的综合能力,提高学生的综合素质,对于当前数学教育教学改革有着极为重要的现实意义。

1数学建模能够丰富和优化学生的知识结构,开拓学生的视野。

数学建模所涉及到的许多问题都超出了学生所学的专业,例如“基金的最佳适用”、“会议筹备”、“地震搜索”等许多建模问题,分别属于不同的学科与专业,为了解决这些问题,学生必须查阅和学习与该问题相关的专业书籍和科技资料,了解这些专业的相关知识,从而软化或削弱了目前教育中僵死的专业界限,使学生掌握宽广而扎实的基础知识,使他们不断拓宽分析问题、解决问题的思路,朝着复合型人才和具备全面综合素质人才的方向发展。

2数学建模可以培养学生利用数学知识解决实际问题的能力。

数学建模要求建模者利用自己所掌握的数学知识及对实际问题的理解,通过积极主动的思维,提出适当的假设,并建立相应的数学模型,进而利用恰当的数学方法(现有的或新创造的)求解此模型,并对解做出评价,必要时对模型做出改进。这一过程包括了归纳、整理、推理、深化等活动,因此把数学建模引入课堂教学,必将改变目前数学教学只见定义、定理不见问题背景的局面,必将改变知识僵化、学而不用的局面,从而调动了学生学习的积极性,培养了学生解决实际问题的能力。

3数学建模能够培养学生的创造力、想象力、联想力和洞察力。

数学模型来源于客观实际,错综复杂,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,必须积极动脑,而且常常需要另辟蹊径,在这里,常常会迸发出打破常规、突破传统的思维火花,通过这种实践活动,可以培养学生的创造能力,促使他们在头脑中树立推崇创新、追求创新和以创新为荣的意识。在从实际问题中抽象出数学模型的过程中,须把实际关系转化为数学关系,这要求他们敢于想象和联想,此外他们还要从貌似不同的问题中抓住其本质的和共性的东西,这将培养他们把握问题内在本质的能力,即洞察力,可以说,培养学生的这些能力始终贯穿在数学建模的整个过程。

4数学建模可以培养学生熟练地运用计算机的能力。

5数学建模可以增强大学生的适应能力。

通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对不同的实际问题,如何进行分析、推理、概括以及如何利用数学方法与计算机知识,还有各方面的知识综合起来解决它。因此,他们具有较高的素质,无论以后到哪个行业工作,都能很快适应需要。不仅如此,由于建模决不是一件轻而易举的事,需要学生对实际问题进行反复多次的研究、分析、观察和对模型进行反复多次的计算、论证及修改等,整个过程是一个非常艰辛的探索过程,这可以培养学生高度的责任感、坚韧不拔的毅力、遭遇挫折后较强的心理承受能力以及孜孜不倦、精益求精的探索精神,使他们具有良好的心理素质与精神状态。同时数学建模一般都是由几个人组成的团队来完成的,其成功与否,完全取决于大家的密切合作,既要合理分工,又要密切配合,这样又可以培养学生的组织管理能力、协调能力和相互协作的团队精神,这些对他们今后走向工作岗位都是大有裨益的。

此外,数学建模从教育观念、内容、形式和手段都有一定的创新,对数学教学改革有积极的启示意义。首先,数学建模突出了教与学的双主体性关系。教师要根据学生的学习兴趣、能力及特点,不断修正自己的教育内容和方法。学生要对教师所给予的信息有批判性地、创造性地、发展性地能动反映,要在相互讨论、相互启发下寻求更多更好的解答方案。这种双主体的关系是对传统教学方式的根本突破。

其次,数学建模促进了课程体系和教学内容的改革。长期以来,我们的课程设置和教学内容都具有强烈的理科特点:重基础理论、轻实践应用;重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,这迫使我们调整课程体系和教学内容。比如可增加一些应用型、实践类课程等等;在其余各门课程的教学中,也要尽量注意到使数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容也得到了更新。

再次,数学建模增加了教师对新兴科技知识的传授,拓宽了学生的知识面。这些特点对于目前数学教材中存在的内容陈旧、知识面狭窄及形式呆板等问题,具有借鉴作用。数学建模的试题通常联系新兴的学科,在科学技术迅猛发展的今天,各种新兴学科、边缘学科、交叉学科不断涌现,广博的知识面和对新兴科学技术的追踪能力是获得成功的关键因素之一。

数学建模不仅有利于学生更好的掌握知识、运用知识,也有利于高校的科研和教学,使学生和教师能在平时的学习、工作中自动形成勤于思考的好习惯,数学建模竞赛与学生毕业以后工作时的条件非常相近,是对学生业务、能力和素质的全面培养,特别是开放性思维和创新意识,这项活动的开展有利于学生的全面素质的培养,既丰富、活跃了广大学生的课外生活,也为优秀学员脱颖而出创造了条件。

【参考文献】。

[1]颜筱红,粱东颖。高职院校数学建模教学的研究[j].广西教育,2013(2):54,134.

[4]谢金星。2008高教社杯全国大学生数学建模竞赛[j].工程数学学报,2008(25):1-2.

国际大学生数学建模论文篇七

大学生数学建模竞赛,由教育部高教司和中国工业与应用数学学会主办,创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,同时成为高等院校文秘站-您的专属秘书,中国最强免费!一项重大的课外科技活动。尤其,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。每年的9月份举办,三人为一组,比赛时间共三天,最终通过论文的形式来体现,以创新意识、团队精神、重在参与、公平竞争为宗旨,旨在培养大学生的创新意识与团队精神。

数学建模竞赛作为教育部四大学科竞赛之首,规模最大,影响最大。因此,数学建模竞赛培训显得尤为重要。它有利于让学生尽早了解并掌握建模的基础理论知识及相关应用软件;有利于培养学生分析问题和解决实际问题的能力;有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解;有利于培养学生的创新意识和发散思维;有利于训练学生快速获取有用信息和资料的能力;有利于增强学生的写作技能和排版技术等。

通过参加数学建模竞赛,受到了一次科学研究的初步训练,初步具备了科学研究的能力,提高了自身的分析问题和解决问题的能力以及计算机应用能力,培养了刻苦钻研问题的精神以及与他人友好合作的团队精神,培养了敢于战胜困难的坚强意志和创新能力,这些能力和精神为各自今后的学习和工作都带来了巨大的影响。因为参与数学建模比赛,许多学生收获了知识,取得了荣誉,参赛队员的共同体会是:一次参赛,终生受益。

二、培训中创新方法――案例模板式教学。

数学建模培训一般是通过给学生讲解数学建模的基本知识与理论,相关的数学软件及软件包,辅以讲座,上机,讨论等方式,让学生对数学建模的基本方法及相关数学软件的使用有一定的了解,对数学建模的基本思想有基本把握。

在培训中,通过对以往竞赛试题的分析,将近几年的数学建模竞赛分为两大类:固定式问题和开放式问题,采用案例模板式教学对参加建模竞赛的同学进行辅导。其中,固定式问题指让学生对固定的有一定物理背景的问题进行数学建模求解;开放式问题指让学生准确把握题意后能充分根据自己的喜好,选取不同方向或方法进行建模求解。例如:

全国大学生数学建模大赛a题《车道被占用对城市道路通行能力的影响》为典型的固定式题目,要求学生对已给的.视频数据确定通行能力的数学模型,并且求出排队长度。而全国大学生数学建模竞赛b题《20上海世博会影响力的定量评估》为典型的开放式题目,让学生选取感兴趣的某个侧面,利用互联网数据,建立数学模型,使学生在准确把握题意后能充分根据自己的喜好,选取不同方向进行建模求解,相对于固定问题开放性较强。

因此,要求教师在数学建模培训中,既要突出固定式的求解思路,又要注意培养学生开放式的发散思维。具体表现为:在固定求解思路上,要包括深刻理解题意,挖掘问题内部的区别,结合已有的数学建模基础、数学建模基本方法、数学建模特殊方法,通过对具体竞赛题的分析,总结出相关类型问题的数学求解方法;在开放性问题上,充分调动学生的积极性,让学生在查阅相关资料后,进行讨论交流,各抒己见,从各个层面,多角度的找出可行性强的数学建模方法。求解思路如下图1和图2所示。

三、结束语。

数学建模培训是对大学数学教学改革的一次推动,是对高校教学水平、管理水平的大检验,是对指导教师综合实力的展示和提升,也是对学生各种能力和综合素质的一次提高,参加过建模的同学收获很多,不但领会到数学之美,建模之乐,还体会到团队合作的强大,专业交叉的益处,可以说对学生是一个专业,性格,心智等全方面的锻炼和提高。

通过对大学生数学建模竞赛培训中教学创新方法的初步探究,数学建模培训变得更加系统化、专业化,为学生参加各级数学建模竞赛提供了更好地学习实践和交流的平台,为培养学生的专业建模能力探索了新的途径和方法。

国际大学生数学建模论文篇八

全国大学生数学建模竞赛是由教育部高等教育司和中国工业与应用数学学会联合举办,面向全国大学生的一年一届的群众性科技创新活动。数学建模竞赛由最初的1992年的79所高校314个参赛队发展到2011年来自全国33个省/市/自治区(包括香港和澳门特区)以及新加坡和澳大利亚的1197所高校的17317个参赛队,成为了全国高校中规模最大,在国内外都具影响的大学生课外科技活动。且数学建模不再是要求学生生硬地记住几条数学公式解决几道应用题,它的应用性强,应用领域广泛,所涉及的学科众多,有化学、生物、经济、金融、信息、材料、环境、能源等,所以不仅要求学生能将实际问题转化为数学问题,更要求学生能灵活地运用数学、计算机及其他学科的知识来解决问题,而且参赛形式是3人组队,利用开放的图书馆、互联网等资源共同完成,最后提交一篇论文,学生在这样的学习和竞赛中既能提高自身的学习能力、应用能力、创新能力,又能提高沟通技能、团队协作能力及论文写作能力。

1、数据统计。

从表中可以看到虽然西北赛区参赛队数占全国赛区参赛队数的`比例都有所上升,却仍然低于全国年增加参赛队占全国赛区总参赛队的比例。由此我们可以得出西北高校的大学生参与数学建模竞赛的积极性较低。

2、原因分析。

造成西北高校大学生参与数学建模竞赛的积极性较低的原因是多方面的:(1)学生缺乏应有的积极性与学生本身的学习能力有一定的关系,与内地高校大学生相比,西北高校大学生的基础较差,专业理论功底薄,动手能力相对较差,而且数学建模对学生的能力要求较高,不仅要求学生能将实际问题转化为数学问题,更要求学生能灵活地运用数学,计算机及其他学科的知识来解决问题。因此,有些学生虽然对数学建模竞赛有参与的想法,且在对数学建模不够了解的情况下参与,而在参与过程中受到知识结构和水平,客观条件的限制,不得不中途退出。(2)学校对数学建模重视不够,对数学建模竞赛活动的宣传、推广、组织力度不到位,以青海大学为例,青海大学近三年的参赛队都只有几队,而且都是教师通过数模选修课选拔出进行参赛的,每年竞赛学校都未发过通知,而且学校很少举办有关建模的讲座,以及开展此类活动,数学建模协会也是在近几年才创办的,由于学校对数学建模不够重视,数学建模的发展失去了最关键的引力,学生由此对数学建模反应冷淡。(3)教师的参与面窄也影响了学生参与数学建模竞赛及活动的积极性,目前数学建模的指导工作大多依靠数学系的老师,而且其他专业的教师对数学建模了解甚少,教师的参与面窄,指导力度非常有限,而且很多学校都是在临近竞赛了才对学生进行一个月左右的集中培训,然而数学建模本身是一项系统工程,牵涉的知识面广,不是短时间的“集中培训”突击应试教育就可以奏效的,这样的指导对学生的作用不大。

1、学校应提高对数学建模的重视程度,积极宣传和组织数学建模活动。

西北高校大多都将数学建模作为选修课开设,对学生该课程的考核也很简单,所以笔者建议学校能将数学建模作为一门必修课开设,提前让学生有机会接触,掌握一些数学建模的理论基础,并同时开设数学实验课,要求学生掌握多种数学软件。学校还可通过学校网站,学生社团举办活动定期宣传数学建模,扩大数学建模竞赛的影响力,围绕数学建模开展学术交流,邀请专家及有经验的老师开展数学建模讲座,由此营造一种良好的数学建模气氛。

2、学生应注重自身各方面能力的培养,积极主动地参与数学建模竞赛。

学生应有意识地通过各种渠道尽可能多地去了解数学建模竞赛,并在平常的学习过程中丰富自己数学、计算机、工程等各方面的知识,并能将单科知识相互联系和渗透,同时利用互联网了解更多的学科前沿及社会热点,将书本知识应用于这些未解决的社会热点问题上,通过这样长时间的实践,自身的学习能力、创造能力、“应用”数学的能力真正能得到提高,进而加深对数学的热爱。

3、学校教师应增强对数学建模教学的热情,引导学生积极参与数学建模活动。

数学建模不仅对学生的能力要求较高,对参与的教师的要求更高,因此教师应该不断地进行知识的扩充,创造性地从事教学,做到将学科前沿及社会热点融入到教学中来,并在学生日常的数学建模活动中给予指导,主动地与学生共同去探讨,教师和学生能相互启发,相互促进,共同提高其能力。

三、结束语。

由于西北高校的数学建模竞赛起步晚,且学生的基础较差,专业理论功底薄,加上学校对数学建模重视不够,以及教师的参与面窄,指导积极性不高,势必造成数学建模在校内影响和学生的认知面极其有限的境地,且培养学生数学建模能力也是一项长期而艰巨的任务,因此我们必须坚持不懈,通过学校、学生、教师的共同努力将数学建模竞赛在西北高校中更有效的推广,促使更多的学生积极参与到数学建模竞赛中来,更好地完成学校承载的培养高素质,高技能人才的教育目标。

【参考文献】。

国际大学生数学建模论文篇九

在得知xxxx年全国大学生数学建模竞赛中,我们队(队员:)获得xxxx省赛区二等奖的时候,我并不喜出望外,反而觉得有点遗憾,有点可惜,因为我们没有完全发挥出水平,这样成绩对我们来说并不理想。其实这也是在我的预料之中的。以下是我个人在这次比赛中的感受:

在数模竞赛中想获得好成绩,进军全国评选并非易事。首先模型要建得好,其次文本要写得好,即叙述要简洁,文字要流畅,逻辑严谨。可要做到这两点并不容易,每个问题涉及的知识面很广,要求有扎实的数学基础,需要掌握高等数学,线性代数,离散数学,概率与数理统计理论,有时还要涉及物理等等方面的知识,这有赖于我们平时不懈的努力和刻苦的学习钻研。此外,开始建立的模型并不是最优的,需要反复修改,不断优化,最后才能求出最优解。建立好数学模型后,接下来是写文本,文本必须简洁,让人容易看懂,如果文本写得不好,不能把模型正确表达出来,也不能取得好成绩。因为文本在评分中占了很大的比例,直接影响我们的论文是否能够获得高分。

比赛的形式是以三人为一对的,队员之间分工合理、科学与否直接影响比赛成绩。如果能充分发挥各个队员的优势,那么这是最好的。例如,文笔好的负责写文本,数学好的负责建立模型,查资料,编程好的负责编程求解。也就是团队精神,在意见有分歧的时候,要顾全大局,而不要各做各的,互不谦让,这一点无论做什么都是至关重要的。

在这次比赛中,我们队合作得很愉快,配合也很默契,所以我们很顺利的.建立了模型,并求出了模型的解。在与同学们和老师讨论过程中,我们发现很多他们讨论的问题,是我们小组讨论过,并证明过不是最优解的模型。可以说我们是最早建立模型的,并得出模型的解的。但我总觉得我们的文本写得不理想,不满意,这也没办法,因为我们花在第三个问题的时间太多了。以至到快要交卷的时候我们还忙于修改文本。

我已参加过两次比赛,两次的成绩都不错,因此我们组比别人有优势,有参赛的经验,除外,对于做题我们都很有经验,知道如何去查资料,怎样与指导老师讨论问题,可以说,有一种居高临下的感觉,游刃有余。

虽然我们没在全国上获奖,但我们已经尽了力,结果如何,都无怨无悔。最后我要感谢广州大学给我们提供这么一个参赛的机会,学校为了这次比赛,准备了很多人力物力,在比赛前一个月组织参赛的学生集训,这是我校在这次比赛中取得好成绩的原因之一。很多老师为了这次比赛花了很多心血,而且在比赛的最后一天,一些老师还陪着学生一起通宵达旦,这是难能可贵的精神,我想在我们学校应该大力发扬。预祝我校在今年的全国大学生数学建模取得更优异的成绩。

国际大学生数学建模论文篇十

竞赛形式组委会规定三名大学生组成一队,参赛学生根据题目要求可以自由地收集、查阅资料,调查研究,使用计算机、互联网和任何软件,在三天时间内分工合作完成一篇包括模型假设、模型建立和模型求解、计算方法的设计和计算机实现、结果的检验和评价、模型的改进等方面的论文(即答卷)。竞赛评奖的主要标准为假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度。

二、赛前学习内容。

1.建模基础知识、常用工具软件的使用。

(1)掌握数学建模必备的基础知识(如线性代数、高等数学、概率统计等),还有数学建模竞赛中常用的但尚未学过的方法,如灰色预测、回归分析、曲线拟合等常用预测方法,运筹学中若干优化算法。(2)针对数学建模特点,结合典型的问题,重点学习几种常用数学软件(matlab、lindo、lingo、spss)的使用,并且具备一般性开发能力,尤其应注意同一数学模型,有时可以使用多个软件进行求解。

数学建模竞赛是一项非常具有挑战性和创造性的活动,不一定用一些条条框框规定各种实际问题的模型具体如何建立。但一般来说,数学建模主要涉及两个方面:一是将实际问题转化为理论数学模型;二是对理论数学模型进行分析和计算。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如图1来表示。

建模与计算是数学模型的两大核心。当数学模型建立后,完成相关数学模型的计算就成为解决问题的关键,而所采用算法的好坏将直接影响运算速度的快慢,以及答案的优劣。根据近年来竞赛题型特点及以前参赛获奖学生的心得体会,建议多用数学软件如matlab、lindo、lingo、spss等来设计求解的算法,本文列举了几种常用的算法。(1)参数估计、数据拟合、插值等常用数据处理算法。在数学建模比赛中,通常会遇到海量的数据需要处理,而处理数据的关键就在于正确使用这些算法,通常采用matlab作为运算工具。(2)线性规划、整数规划、多目标规划、二次规划等优化类问题。数学建模竞赛大多数问题是最优化问题,很多时候这些问题可以用数学规划模型进行描述,通常使用lindo、lingo软件求解。(3)图论算法主要包括最短路、网络流、二分图等算法,如果涉及到图论的问题可以用这些方法进行求解。(4)最优化理论的三大非经典算法:神经网络、模拟退火法、遗传算法。这些算法通常是用来解决一些较困难的最优化问题的,主要使用lingo、matlab、spss软件来实现。

在国家数学建模竞赛中常见如下问题:数学模型最好明确、合理、简洁,但是有些论文不给出明确的模型,只是根据赛题的情况用“凑”的方法给出结果,虽然结果大致是对的,但是没有一般性,不是数学建模的正确思路;有的论文过于简单,该交代的内容省略了,难以看懂;有的队罗列一系列假设或模型,又不作比较、评价,希望碰上“参考答案”或“评阅思路”,反而弄巧成拙;有的论文参考文献不全,或引用他人成果不作交代。另外,吃透题意方面不足,没有抓住和解决主要问题;就事论事,形成数学模型的意识和能力欠缺;对所用方法一知半解,不管具体条件,套用现成的方法,导致错误;对结果的分析不够,怎样符合实际考虑不周;队员之间合作精神差,孤军奋战;依赖心理重,甚至违纪。以上情况都需要各参赛队引起注意,有则改之,无则加勉。

四、竞赛中应重视的问题。

1.团队合作是能否获奖的关键。

通常在数学建模竞赛时,三个队员的分工要明确,其中一个作为组长,也算是领军人物,主要是负责构建整个问题的框架,并提出有创意的想法,当然其他部分如论文写作、程序设计、计算等也要能参加;第二位是算手,主要进行算法设计及编程计算;最后一位是写手,主要工作在于论文的'写作和润色上。好的论文要让评委一眼就能明了其中的意思,因此写手的工作也需要一定的技巧。当然,要想竞赛时达到这样的标准,需要三个队员在平时训练时多加练习。

2.合理安排竞赛过程中的时间。

数学建模竞赛中时间分配很重要,分配不好有可能完不成竞赛论文,有的队伍把问题解答完了,但是发现没有时间进行写作,或者写的很差劲而不能获奖,因此要大致做好安排。一般前两天不要熬的太狠,晚上10:00点前要休息,最后一夜必须熬通宵,否则体力肯定跟不上。之前有些队伍,前两天劲头很足,晚上做到很晚才休息,但是到了第三天晚上就没有精力了,这样一般很难获奖。

3.摘要的撰写很重要。

论文的摘要是整篇论文的门面。摘要首先可以强调一下所做问题的重要性和意义,但不要写废话,也不要完全照抄题目的一些话,应该直奔主题,主要写明自己是怎样分析问题,用什么方法解决问题,最重要的结论是什么。在中国的竞赛中,结论很重要,评委肯定会去和标准答案进行比较。如果结论正确一般能得奖,如果不正确,评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点和美国竞赛不同,因此要认真把重要结论写在摘要上,如果结论的数据太多,也可只写几个代表性的数据,注明其他数据见论文中何处。

4.论文写作也要规范。

数学建模竞赛的论文有一个比较固定的模式。论文大致按照如下形式来写:摘要、问题重述、模型假设和符号说明、问题分析(建立、分析、求解模型)、模型检验、模型的优缺点评价、参考文献、附录等等。另外,在正文中也可以加入一些图和表,附录也可以贴一些算法流程图或比较大的结果或图表等等,近年来为了防止舞弊,组委会要求把算法的源程序也必须放在附录中。

五、结论。

全国大学生数学建模竞赛对于大学生而言,是一个富有挑战的竞赛。它不但能培养大学生解决实际问题的能力,同时能培养其创造力、团队合作的能力,而这些能力将会成为参赛学生以后成功就业的重要推动力。可以说,一次参赛,终身受益。

国际大学生数学建模论文篇十一

数学建模解决的都是与我们生活息息相关的实际问题,很多都是当前社会比较关注的热点问题,比如开放性小区的建立,人工智能机器人在工作中的应用,这些问题开放性比较强,有明确的目的和要求,但它没有唯一的结果和方法。因此留给学生很大的创新空间,使学生对数学产生了极大的兴趣,他们发现这几年学习的高数、线性代数、概率论与数理统计终于派上了用场。数学建模课程会结合《高等数学》,《线性代数》,《概率论与数理统计》等数学基础学科,还会经常涉及到物理,工程,经济,金融,农林等各个领域各个学科,从不同的学科中找最热门最真实的案例进行教学,这要求学生有很强的自学能力,要不得学习新知识,新思路和新方法,让学生结合所学的数学知识把自己学科的专业知识转化成数学模型,让数学充分发挥它的优势,以达到培养学生的创新能力,更重要的是对学生的知识体系起到了完善的作用。在整个竞赛中从模型建立与求解到写作,都是由学生独立完成,充分发挥了他们的自主性和创造性。

2.数学建模能培养学生团队合作精神和创新创业能力。

数学建模竞赛是由三个人组成一个小团队共同处理一个问题,在这个团队中每个人都各有分工,有的人擅长建立模型,有的人擅长计算机编程求解模型,有的人擅长写作,这三个人缺一不可,任何一个人都发挥着举足轻重的作用。通常我们还会设一个队长能协调队员之间的关系和对题目的把控。每个人都有不同的性格,能力,学识,知识结构,在做题的过程中会产生不同的想法,比如在模型的建立中,数据的处理过程中,算法的选取,编程语言的选取,写作的过程中都会有很多的不同,所以每个成员都要有团队精神、相互信任、相互沟通、相互尊重、取长补短、充分发挥集体的力量共同完成一个项目。同时每年无论在培训还是正式比赛过程中由于高强度的脑力活动,强大的心理压力以及队员之间的不和睦都会造成中途退赛,这样无疑是最可惜的。所以,在竞赛中除了培养学生的创新意识和团队合作精神,还培养了大家的心理承受能力,强大的意志力以及与他人沟通交往的能力,是对自己综合素质的一个提高,对未来考研、出国、就业都有很大的帮助。

3.数学建模培养学生的创新创业的.综合能力。

通过在大二一年的数学建模选修课,以及假期的集中培训培养了学生的创新创业能力,很大程度上提高了他们思考问题解决问题的能力等综合素质,同时还培养了他们应用计算机去处理各种问题的科技能力。他们学会了各种软件、语言,很多同学会数据挖掘、机器学习以及人工智能,这些都是未来科技的前沿,科技创新是企业发展的动力,现代教育不能只停留在教授学生理论知识的学习,更重要的是理论与实践的结合,走产学研相结合的道路,数学建模很好的把理论与实践相结合,激发学生科研热情,提高学生科研积极性,激发了学生的创新创业能力,为以后工作生活奠定了扎实的基础。为了让建模更好的服务学生,我们将不断的努力,探索和改进培养模式和方法,争取通过数学建模平台使更多的同学受益,培养出更多的具有创新创业能力的大学生。

参考文献:

[2]韦程东.数学建模能力培养方法研究[m].北京:科学出版社,2012.

您可能关注的文档