精选又有趣的数学小故事通用(汇总12篇)
- 上传日期:2023-11-13 11:01:02 |
- ZTFB |
- 12页
发展是一个国家、一个民族的根本大计,离开了发展,一切都将无从谈起。在写总结时要注重逻辑性和条理性,清晰地陈述观点和结论。感谢小编为我们搜集了这些总结范文,让我们可以更好地了解总结的重要性和方法。
又有趣的数学小故事通用篇一
一下是小编整理的几则。
数学。
学习。
吧!
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。
丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
于是他就去问他的当数学老师的妈妈:“0-9既然叫‘阿拉伯数字’,那么肯定是阿拉伯人发明的了,妈妈对吗?”
妈妈摇摇头,说:“阿拉伯数字实际是印度人发明的。大约在1520xx年以前,印度人就已经用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就可以写成。后来,由于各国之间的接触,这些数字传入阿拉伯,阿拉伯人觉得它们很简单,于是在自己的国家开始广泛使用并且把他传到全欧洲。就这样,它们慢慢地就成了我们今天使用的数字。因为阿拉伯人在传播这种数字方面,起的作用很大,人们也就习惯了称这种数字为‘阿拉伯数字’。”
小明高兴地说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”小明和妈妈都笑了。
数学学校举行儿歌比赛,大象老师做裁判。
小猴聪聪第一个举手。聪聪清了清嗓子,开始朗诵道:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”
聪聪刚刚说完,小狗佳佳兴起手,说:“我的儿歌和聪聪的很相似。”大象老师说:“好!那我们听听你的儿歌。”佳佳大方地走上台,朗诵道:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”
大家为他们的精彩表演鼓掌。大象老师说:“他们的儿歌主我们明白了进位加法和退位减法,所以,我们觉得他们两个人都得冠军,好不好?”大家同意老师的意见,高兴的鼓掌祝贺他们俩。
雅各布·伯努利是欧洲著名的数学家,他于1654年出生在瑞士的巴塞尔。
从13岁开始,雅各布悄悄地写起了日记,他把自己在学习中所取得的收获及遇到的难题,统统记了下来。翻开他的日记,有阅。
读书。
报杂志的体会,有与别人讨论数学问题时得到的启发,有解决数学难题突发的奇想……日记成了雅各布学习数学的问题集,解决问题的思路集、办法集,研究数学问题的收获集、成果集。
雅各布对数学的执著追求,终于使他走上了研究数学的道路。他33岁就成为巴塞尔大学数学教授。
小熊不喜欢学习,。一天,它忽然觉得做生意挺有意思,于是在学校旁边开了一个水果店。小兔和小猴是它的同学,它们商量好,要整整这个不爱上学的懒家伙。
它们来到小熊的水果店。
“桃子怎么卖呀?”小猴问。
“第一筐里6元3公斤,第二筐里6元2公斤。”小熊说。
小猴又说:“如果我从两筐拿5公斤,就要付你12元,对吗?”
小熊点点头。
“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,是不是?”小猴说。
“正是,正是。”小熊讲。
于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。
到了晚上,小熊结账,怎么算怎么亏本。它想,除了小猴,没有其他人来买过东西呀。第二天,小兔来找小熊,小熊把情况和小兔说了。小兔笑着说:“这都是因为你学习不好,我们来教训你一下。”说完,就把少给的钱补给了小熊。
小熊惭愧地低下了头。从此以后,小熊每天上课都认真。它们三个成了好朋友。
时间。
王国的全体国民刚刚举行完一次数学考试,时间博士邀请数学王国的对对博士来做阅卷指导。对对博士高兴地拿起一份试卷,可是他越看越生气,这是为什么呢?原来他在检查试卷的时候,发现所有人的试题都做错了,例如:
7+6=1;6+6=0;3-7=8。
对对博士把问题反映给时间博士,时间博士看着试卷,笑着对他说:“博士,他们做的并没有错误。因为在时间王国中晚上12点就是0点,所以6=6=0;7点钟再过6小时是13点,也就是1点,即7+6=1;3-7就是表示3点钟前7个小时是8点钟”
对对博士一拍脑袋,说:“对呀!哎,看来我这个博士还得继续学习啊。”
事故讲完了,小朋友们,你认识钟表吗?你会计算时间吗?让我们一起来学习“时间”。
在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……。
下面就是一个小故事,是一个数字之间的故事。
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”
0的兄弟姐妹们一口齐声的说:“好啊。”
8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”
老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”
又有趣的数学小故事通用篇二
此刻人买狗,有些是为了看家防盗,有些是为了上山打猎,有些是为了侦查破案,有些是为了观赏消遣。古代人也会为了各种目的买狗。下方是中国古代数学书《九章算术》里一道关于买狗的应用题:
今有共买犬,人出五,不足九十;人出五十,适足。问人数、犬价各几何?
题目的大意是说,此刻有几个人合买一条狗,每人出5文,还差90文;每人出50文,刚好够了。问有多少人,狗的价钱是多少。
第一次每人出5文,第二次改成出50文,增加的钱数是50—5=45(文)。
每人多拿出45文,刚好补足了原先短缺的钱数90文,所以人数是90÷45=2,狗的价钱是50×2=100(文)。
答案是:共有两个人,买一只狗要100文。
《九章算术》里还有一些类似的问题,几个人合买一件东西,拿出来的钱有时候多了(盈),有时候不够(不足),有时候刚好(适足)。这种算术题型很常见,至今还叫做“盈亏问题”或“盈不足问题”,保留了《九章算术》的传统。
又有趣的数学小故事通用篇三
假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的。一样指的是同一天生日,如5月5日,并非指出生时间完全相同。”
也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一。然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。
人们对此感到吃惊的原因之一是,他们对两个特定的人拥有相同的出生时间和任意两个人拥有相同生日的概率问题感到困惑不解。两个特定的人拥有相同出生时间的概率是三百六十五分之一。回答这个问题的关键是该群体的大小。随着人数增加,两个人拥有相同生日的概率会更高。因此在10人一组的团队中,两个人拥有相同生日的概率大约是12%。在50人的聚会中,这个概率大约是97%。然而,只有人数升至366人(其中有一人可能在2月29日出生)时,你才能确定这个群体中一定有两个人的生日是同一天。
其实数学是非常有趣的,大家一定要开心学数学!
又有趣的数学小故事通用篇四
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。
在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是。虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
又有趣的数学小故事通用篇五
祖冲之(公元429-500),字文远,是我国古代南北朝时代南朝杰出的科学家,原籍是范阳郡遒县(今河北莱源县),因战乱,他的祖先迁居江南。公元429年,祖冲之诞生在南方宋朝一个士大夫的家庭。这家有几代研究历法,祖父掌管土木建筑,也懂得一些科学技术,所以祖冲之从小就有机会接触家传的科学知识,他少年时代就开始钻研古代的经典。思想机敏。勇于创新,勤奋地学习,对各种事物敢于大胆设想,勇于创新,并且勤于实践。他搜集和阅读了大量有关天文、数学等方面的书籍与文献资料,并经常进行精密的测量和仔细的推算。就象自己说的那样;“亲量圭尺,躬察仪漏,目尽毫厘,心军筹策”。由于他既崇尚抽象的理论,又注重理论的应用,突破了天命论、神秘主义的桎梏,敢于实践,勇于改革,因此在当时劳动人民创造的高度发达的物质财富的基础上,取得了不少有价值的科学成果,特别是天文历法和数学方面的成就更为突出。
我国古代曾经长期采用“十九年七闰月”的方法作为历法来计算阴历。祖冲之经过仔细推算和研究,发现这种历法虽然可以使两种(阴历和阳历)天数大致相符,但还不够精确,过了二百年就会相差一天。因此,他决心打破传统观念改革闰法。总结了前人经验,经反复实验,科学计算,改为第三百九十一年中有一百四十四个闰年。这样就相当精确了。他在一文历法中的另一重大成就是在历法计算中第一次应用了岁差,即指地球围绕太阳运行五周,不可能完全回到上一年的冬至点的现象。他算出了岁差为四十五年十一个月后退一度(一度等于60分),并在他的《大明历》中加以应用。虽然尚不够准确,但这在天文学史上却是一个空前的创举。为了使历法更精确,他还算出交点月,即月亮连续两次经过黄白交点所需的时间是27。21223日,这与现代测得的21。21222日极相近似。这为准确地算日食月食妇生的时间创造了条件。
在上述基础上,他制成了当时最科学的历法——《大明历》。那时他才三十三岁,公元462年,他把《大明历》交给朝廷,请求予以颁行。但遭到以贵族官僚戴法兴为首的坚决反对。戴法兴是一个很有权势的人物,又稍稍懂一点历史,但思想非常保守,戴硬说太阳转动一周(实际上是地球绕太阳一周)的时间有快有慢,没有规律。祖冲之反驳说:“太阳的转动是有一眯规律的,这是有事实根据的”。戴又说:“日月星辰的快慢变化,凡人是测算不出的”。祖冲之说“这些变化并不神秘,只要人们进行精密的观测和细致的推算,是完全可以算出来的。事实上人们已掌握了一定的规律”。把戴批驳得哑口无言,祖冲之终于击败了保守势力,取取得最后胜利,然而直到他死后十年在他儿子祖恒再三推荐下,新历法才在公元510年被正式采用。
祖冲之在数学研究方面,特别是在圆周率的研究上,做出了在数学史具有深远影响的巨磊贡献。古代最早求得的圆周率是“3”,西汉末年刘又得到3.1547的圆周率值。东汉的张衡算出3.1622的值,到了三国末年,数学家刘徽创造了用割圆术求得圆周率方法,得出3.141024的值。祖冲之地吸收了其中一些有的东西,又不为前人结论束缚,经过自己的精密测算,算出圆周率值在3.1415926和3.1415927之间,并以22/7和355/113作为用分数表示圆周率的疏率和密率。这是世界上第一个最精确的圆周率,欧洲人奥托和安托尼兹直到公元1573年,才先后求出这个数值。实际上早在他们一千一百多年前,祖冲之就得到这个数值了,因而,日本数学家三上义夫主张称名为“祖率”。
祖冲之在推算圆周率时,对九位数的大数目,需要反复进行包括加减乘除与开方等方法的运算五百三十次以上。而且当时他还是用筹码(小竹棍)来计算的。从这里可以看出他严谨的治学态度和坚韧不拔的毅力。
后来,祖冲之把数学上的研究成果写成一本书,叫做“缀术”,内容很丰富,可惜早已失传了。
除了在天文、历法和数学方面做出重大贡献外,在他五十岁那年,曾经仿制成功一辆指南车,这车子不管怎么转动,车上木人的手总是指着南方。他又看到群众用人力磨数值非常吃力,于是开动脑筋,反复实验,制成了水碓磨。同时还制造成功一种“千里船”,经过试验,日行百余里。此外,他还懂得音乐,注过多种经典。因而祖冲之可以说是我国古代杰出而又博学多才的一位科学家。
祖恒是祖冲之的儿子,字景烁,生卒年月已无可考。他也是一个博学多才的数学家,曾在公元504年、509年和510年三次上书建议采用祖冲之的《大明历》,终于实现了父亲的遗愿。
祖恒的主要工作是修补编辑祖冲之的《缀术》。
祖恒推导球体积公式的方法非常巧妙,其理论依据是这样一条被他当作“公理”使用的命题:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是立体的高。把这命题翻译成现代汉文并写得详细一点就是:“界于二平行平面之间的确良两个立体,被任一平行这二平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等”。这命题在国外通常称为“卡瓦列利原理”或“卡瓦列利定理”。卡瓦列利(1598-1647)是意大利米兰人,伽利略的学生,波伦拿大学教授,为十七世纪意大利数学家中影响最大的一个。这定理是他于1635年在波伦拿出版的名著《连续不可分几何》一书中提出的,但却比祖恒迟了1100多年。
又有趣的数学小故事通用篇六
当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时光处理一些自我的私事,因此打算出一道难题给学生练习。他的题目是:
1+2+3+4+5+6+7+8+9+10=?
因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。自我也就能够藉此机会来处理未完的事情。但是才一转眼的时光,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。
但是高斯却说他已经将答案算出来了,就是55。老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”老师同学听了以后,都对高斯竖起了大拇指。之后的高斯长大后,成为了一位很伟大的数学家。
又有趣的数学小故事通用篇七
公元前500年,古希腊毕达哥拉斯(pythagoras)学派的弟-子希勃索斯(hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。
不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达。芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来。
同时它导致了第一次数学危机。
又有趣的数学小故事通用篇八
今天,我在数学书上看到一道题目:在学校里,同学们排队伍要一个人排过三秒钟再排,有32人,一共要排多少秒?然后我就去问刚上四年级的妹妹,妹妹说:这题也太简单了吧,就连一年级的小孩子都知道,肯定是96秒。我大叫一声:错。先排第一个人,过了3秒钟后排了一个人,过了3秒钟后又排了第二个人……一直过了93秒,就排了32人,所以只用了93秒。妹妹说:我上当了。妈妈在一旁听到我在给妹妹考数学题,就说:其实在生活中还有好多这样的问题,比如排队、爬楼梯、排桌子,然后妈妈考了我一道题目:小明排一个桌子要12秒,排了19个桌子,一共用了多少秒?我说12×18=216秒,妈妈听到我的答案是对的,就夸奖我说,思路很清晰,很会思考。
其实生活中处处都有数学,无论是在玩,工作上……都会有数学,只要你留心观察,多动脑筋,许多问题就能迎刃而解。
又有趣的数学小故事通用篇九
一天,一个理发师挂出了一块招牌:“村里所有不自己理发的人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。因为如果他给自己理发,那么他就属于自己给自己理发的那一类。但是,招牌上说明他不给这类理发,因此他不能自己理发。如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上说明他要给所有不自己理发的人理发,因此他应该自己理。由此可见,不管做怎样的推论,理发师所说的话总是自相矛盾的。这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为他们的基础。到19世纪末,全部数学几乎都建立在集合论是基础上了。就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年“罗素悖论”的提出,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的变革。
又有趣的数学小故事通用篇十
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
又有趣的数学小故事通用篇十一
大约1500年前,欧洲的数学家们是不明白用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照必须规则,把它们组合起来表示不一样的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他十分高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时光,这件事被当时的罗马教皇明白了。
当时是欧洲的中世纪,教会的势力十分大,罗马教皇的权利更是远远超过皇帝。教皇十分恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!
于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。之后“0”最后在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
又有趣的数学小故事通用篇十二
抛硬币是做决定时普遍使用的一种方法。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。
首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。
之所以会发生上述情况,是因为在用大拇指轻弹的时候,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选出将要抛钱币的人手上的钱币在落地后哪面会朝上,你应该先看一看哪一面是朝上的,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
相关文档
您可能关注的文档
- 加工工厂合同怎么写(汇总20篇)
- 中国震撼一个文明型国家的崛起读后感如何写 《中国震撼:一个“文明型国家”的崛起》读后感(四篇)
- 2023年学校活动通知汇总(优秀8篇)
- 最新水墨江南散文(优质15篇)
- 给爸爸的吻(汇总9篇)
- 最新城乡规划论文(精选10篇)
- 2023年三国水浒城游记简短(优秀17篇)
- 2023年七月工作计划(优质18篇)
- 最新自己的成长故事(优秀15篇)
- 2023年大学生简历通用(模板8篇)
- 学生会秘书处的职责和工作总结(专业17篇)
- 教育工作者分享故事的感悟(热门18篇)
- 学生在大学学生会秘书处的工作总结大全(15篇)
- 行政助理的自我介绍(专业19篇)
- 职业顾问的职业发展心得(精选19篇)
- 法治兴则民族兴的实用心得体会(通用15篇)
- 教师在社区团委的工作总结(模板19篇)
- 教育工作者的社区团委工作总结(优质22篇)
- 体育教练军训心得体会(优秀19篇)
- 学生军训心得体会范文(21篇)
- 青年军训第二天心得(实用18篇)
- 警察慰问春节虎年家属的慰问信(优秀18篇)
- 家属慰问春节虎年的慰问信(实用20篇)
- 公务员慰问春节虎年家属的慰问信(优质21篇)
- 植物生物学课程心得体会(专业20篇)
- 政府官员参与新冠肺炎疫情防控工作方案的重要性(汇总23篇)
- 大学生创业计划竞赛范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 编辑教学秘书的工作总结(汇总17篇)
- 学校行政人员行政工作职责大全(18篇)