2023年二元一次方程教案(精选10篇)

  • 上传日期:2023-11-12 14:46:22 |
  • ZTFB |
  • 8页

教案能够帮助教师提前预设教学环节,有利于教学效果的提高。教案的编写要注意时效性,及时适应教学的要求和变化。最重要的是,教案只是教学过程的一个辅助工具,教师需要结合自己的实际情况和学生的特点进行灵活运用。

二元一次方程教案篇一

2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。

3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

2.彻底理解题意。

一、情境引入。

二、建立模型。

1.怎样设未知数?

2.找本题等量关系?从哪句话中找到的?

3.列方程组。

4.解方程组。

5.检验写答案。

三、练习。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

(3)已知关于求x、y的方程,

2.p38练习第1题。

四、小结。

五、作业。

二元一次方程教案篇二

1.认知目标:

1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2.能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3.情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

重点:二元一次方程组及其解的概念

难点:用列表尝试的方法求出方程组的解。

(一)创设情景,引入课题

1.本班共有40人,请问能确定男女各几人吗?为什么?

(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

(2)这是什么方程?根据什么?

2.男生比女生多了2人。设男生x人,女生y人.方程如何表示?x,y的值是多少?

两个方程中的x表示什么?类似的两个方程中的y都表示?

象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4.点明课题:二元一次方程组。

[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]

(二)探究新知,练习巩固

1.二元一次方程组的概念

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

(2)练习:判断下列是不是二元一次方程组:

x+y=3,x+y=200,

2x-3=7,3x+4y=3

y+z=5,x=y+10,

2y+1=5,4x-y2=2

学生作出判断并要说明理由。

2.二元一次方程组的解的概念

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

x=1;x=-2;x=;-x=

y=0;y=2;y=1;y=

方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

2x+3y=2

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

y=0.55x+2a=2y

(三)合作探索,尝试求解

现在我们一起来探索如何寻找方程组的解呢?

1.已知两个整数x,y,试找出方程组3x+y=8的解.

2x+3y=10

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

提炼方法:列表尝试法。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

(四)课堂小结,布置作业

1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)

2.你还有什么问题或想法需要和大家交流?

3.作业本。

1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3.本课在设计时对教材也进行了适当改动。例题方面考虑到数女生时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

二元一次方程教案篇三

2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

正确发找出问题中的两个等量关系。

一、复习。

列方程解应用题的步骤是什么?

审题、设未知数、列方程、解方程、检验并答。

新课:

看一看课本99页探究1。

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg。

(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940。

练一练:

二元一次方程教案篇四

1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)。

2、教材内容简要分析。

教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

3、学习内容分析表:

知识点。

重点。

难点。

编号。

内容。

1

2

代入消元法。

代入消元法的具体解法。

3

以实际例题列出方程并解答。

未知数的假设以及运用已知条件列出正确方程。

本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

1、教学顺序。

(1)复习已学过的一元一次方程知识引入开篇实例。

(3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。

(5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。

(6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。

(7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。

2、教学活动程序。

(1)引起注意。

以“上课”号令以及播放ppt唤起学习者的注意。

(2)告诉学习者目标。

以ppt的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。

(3)刺激对先前知识的回忆。

回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。

(4)呈现刺激材料。

在讲解过程中伴随着ppt的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。

(5)提供学习指导。

以教材内容为指导,以及教师的提示语和示范性行为等进行引导。

(6)诱导行为。

在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。

(7)提供反馈。

在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。

(8)评定行为。

以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。

(9)增强记忆与促进迁移。

设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。

3、教学组织形式。

本次教学中选择运用了以下几种教学组织形式。

(1)讲解的形式。

以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。

(2)提问的形式。

这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。

(3)师生共同解答的形式。

采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。

4、教学方法的选择。

本次课程选择运用了讲授法、演示法、练习法的教学方法。

(1)语言的方法—讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。

(2)直观的方法—演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用ppt来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。

(3)实践的方法—练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们独立性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。

二元一次方程教案篇五

4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力。

难点:正确发找出问题中的两个等量关系。

课前自主学习。

1.列方程组解应用题是把未知转化为已知的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()。

2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

(1)方程两边表示的是()量。

(2)同类量的单位要()。

(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()。

4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()。

新课探究。

看一看。

课本113页探究1。

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)()。

(2)()。

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg。

根据题意列方程,得。

答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料1820千克,每只小牛一天需用7到8千克与计算()出入。(有或没有)。

练一练:

小结。

用方程组解应用题的一般步骤是什么?

二元一次方程教案篇六

(2)填空(每空2分,共26分)。

1、在方程中。如果,则。

2、已知:,用含的代数式表示,得。

4、如果方程的两组解为,则=,=。

5、若:=3:2,且,则,=。

6、方程的正整数解有组,分别为。

7、如果关于的方程和的解相同,则=。

8、一个两位数的十位数字与个位数字之和等于5,十位数字与个位数字之差为1,设十位数字为,个位数字为,则用方程组表示上述语言为。

9、已知梯形的面积为25平方厘米,高为5厘米,它的下底比上底的2倍多1厘米,则梯形的上底和下底长分别为。

10、写出一个二元一次方程,使其满足的系数是大于2的自然数,的系数是小于-3的整数,且是它的一个解。。

(3)选择(每题3分,共30分)。

a、2个b、3个c、4个d、5个。

12、如果是同类项,则、的值是()。

a、=-3,=2b、=2,=-3。

c、=-2,=3d、=3,=-2。

13、已知是方程组的解,则、间的关系是()。

a、b、c、d、

a、3b、-3c、-4d、4。

16、若方程组的解满足=0,则的取值是()。

a、=-1b、=1c、=0d、不能确定。

a、0b、-1c、1d、2。

18、解方程组时,一学生把看错而得,而正确的解是那么、、的值是()。

a、不能确定b、=4,=5,=-2。

c、、不能确定,=-2d、=4,=7,=2。

19、当时,代数式的值为6,那么当时这个式子的值为()。

a、6b、-4c、5d、1。

20、9、甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为米/秒,乙的速度为米/秒,则下列方程组中正确的是()。

a、b、c、d、

三、解方程组(每题5分,共20分)。

1、2、

3、4、

四、列方程组解决实际问题:(每题6分,共24分)。

2、小明用8个一样大的矩形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的矩形;图案甲的中间留下了边长是2cm的正方形小洞.求(a+2b)2-8ab的值.

4、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:

甲同学说:二环路车流量为每小时10000辆。

乙同学说:四环路比三环路车流量每小时多2000辆。

丙同学说:三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍。

请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?

文档为doc格式。

二元一次方程教案篇七

1.知识与能力目标。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标。

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点。

2、能根据一次函数的图象求二元一次方程组的近似解。

教学难点。

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法。

学生操作------自主探索的方法。

二元一次方程教案篇八

1、本节课是一堂概念课,设计时按照“实例研究、初步体会―类比分析,把握实质――归纳概括,形成定义――应用提高,发展能力”的思路进行,让学生体会到因为“需要”而学习新知识,逐步渗透应用意识。

2、二元一次方程及其解的意义类比一元一次方程进行学习,一方面加深学生对方程中“元”与“次”的理解,另一方面易于理清一元一次方程组有关概念的学习扫清障碍。

3、分层递进,循环上升,学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目设计从单一知识点的直接用,逐渐对多个知识点的灵活运用,给学生设置必要的'台阶,使其一步步向前,最终达到教学目标,充分尊重学生的认识规律。

4、教师始终把自己放策划者,引志者,引导者,促进者的位置,注重学法指导,把学生推向前台,使学生以探索者,研究者的身份穿梭于课堂,充分突出其主体地位,让学生在学习中获得成功,收获自信,使其德智双赢。

文档为doc格式。

二元一次方程教案篇九

教学目标:

知识与技能目标:

通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。

培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

过程与方法目标:

经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

情感态度与价值观目标:

1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:

经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

难点:

教学流程:

课前回顾。

情境引入。

探究1:今有鸡兔同笼,

上有三十五头,

下有九十四足,

问鸡兔各几何?

“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?

(1)画图法。

用表示头,先画35个头。

将所有头都看作鸡的,用表示腿,画出了70只腿。

还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿。

四条腿的是兔子(12只),两条腿的是鸡(23只)。

鸡头+兔头=35。

鸡脚+兔脚=94。

设鸡有x只,则兔有(35-x)只,据题意得:

2x+4(35-x)=94。

比算术法容易理解。

想一想:那我们能不能用更简单的方法来解决这些问题呢?

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

(1)上有三十五头的意思是鸡、兔共有头35个,

下有九十四足的意思是鸡、兔共有脚94只.

(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

鸡足有2x只;兔足有4y只.

解:设笼中有鸡x只,有兔y只,由题意可得:

鸡兔合计头xy35足2x4y94。

解此方程组得:

练习1:

2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.

合作探究。

找出等量关系:

解:设绳长x尺,井深y尺,则由题意得。

x=48。

将x=48y=11。

所以绳长4811尺。

想一想:找出一种更简单的创新解法吗?

引导学生逐步得出更简单的方法:

找出等量关系:

(井深+5)×3=绳长。

(井深+1。

解:设绳长x尺,井深y尺,则由题意得。

3(y+5)=x。

4(y+1)=x。

x=48。

y=11。

所以绳长48尺,井深11尺。

练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(b).

归纳:

审:审清题目中的等量关系.

设:设未知数.

列:根据等量关系,列出方程组.

解:解方程组,求出未知数.

答:检验所求出未知数是否符合题意,写出答案。

二元一次方程教案篇十

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

把方程组变形后用加减法消元。

根据方程组特点对方程组变形。

用加减消元法解方程组。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

1.p40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

解二元一次方程组的加减法,代入法有何异同?

p33.习题2.2a组第2题(3)~(6)。

b组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

2.3二元一次方程组的应用(1)

您可能关注的文档