最新植树问题教学设计(通用10篇)

  • 上传日期:2023-11-10 11:30:47 |
  • ZTFB |
  • 12页

时间管理是一种非常重要的技能,它可以帮助我们更高效地完成任务。总结的完美是基于对自身成长的深入思考和整理。下面是一些成功案例,通过学习和借鉴,我们可以更好地改进自己。

植树问题教学设计篇一

教学目标:

1、经历将实际问题抽象成植树问题模型的过程,运用“一一对应思想”掌握种树棵数和间隔数之间的关系。

2、通过观察、比较、概括等数学活动,理解植树问题、排队问题等实际问题都有着相同的数学结构,渗透“化归思想”,能够运用总结出的思想、方法灵活地解决简单的实际问题,发展思维能力。

3、感悟建构数学模型是解决实际问题的重要方法之一。

教学重难点:理解植树问题、排队问题等实际问题都有着相同的数学结构,能够应用总结出的思想、方法解决一些简单的实际问题。

教学过程:

1、猜。

s:每棵树之间的距离是几米?是不是两端都种?(随即揭示植树三种情况)。

s:可以种5棵,4棵,3棵。

2、画。

t:能不能把你的想法用简单的示意图画一画呢?请同学们拿出老师课前发的练习纸,把你的想法画在练习纸上。开始吧!

s独立画图,教师巡视指导。

t:画好了的请举手。我们找同学说说你是怎样画的。

顺学而导,学生交流时教师只需提醒学生检验是不是每隔5米种一棵?总长是不是20米?当学生交流种4棵的想法时,教师可让学生说说有不同的种法吗?交流这两种种法的不同。(同样种4棵树,想法一样吗?)。

3、找规律。

s:他们都是把20米的路平均分成了4段。(4段也可以说是4个间隔)。

t:你的这个发现特别有价值,谁再对照图说怎么都分成4段了呢?

t:怎么求这个段数,能用式子表示一下吗?

s:20÷5=4(个)(能解释一下吗?每隔5米种一棵,20米里面有几个5米就可以分成几段)。

t:我们解答这样的问题,首先要知道这条路被分成几段,我们来观察一下,这三种情况棵数和间隔数之间有什么关系?同桌之间先交流一下。

s:汇报t强调在哪种情况下······(课件演示,结合学生回答随机演示多1和少1的原因)。

4、列算式。

t:能不能根据我们刚才发现的规律把植树的棵数用算式表示出来呢?

s:独立列算式汇报说理由。

t:每间隔5米种一棵,刚才这三种情况都出来了。如果是每隔2米种一棵,能种几棵?有几种种法呢?列出算式。

5、解决问题。

t:老师这里有几个生活中的问题,看你们能不能运用这些知识来解决这些问题呢?

3、5路公共汽车站行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?)。

s列式解答全班交流。

6、拓展延伸。

t:生活当中有没有类似植树问题的现象?或者是用植树问题这样思考方式思考的?

s:剪绳子,锯木头,摆花。

t:老师这里就有这样一个问题,请看——一根木头长10米,要把它平均分成5段。每锯下一端需要8分钟,锯完一共要花多少分钟?(有时间就解答,时间到就留作作业。)。

7、总结。

t:这节课学得怎么样?

植树问题教学设计篇二

教学目标:

1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

教学重点:

理解“植树问题(两端要种)”的特征,应用规律解决问题。

教学难点:

让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

教学准备:

课件。

教学过程:

一、初步感知间隔的含义。

1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。

2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。

二、探究规律,解决问题。

1、找出两端都种树的规律。

植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。

三、应用规律,走进生活。

走进生活:

(一)目标检测:

1.排列在同一条直线上的16棵树之间有()个间隔。2.从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。

(二)闯关题。

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

四、总结:通过这节课的学习,你们有什么收获?

五、作业设计。

实地考察。

两端要栽:棵数=间隔数+1;

植树问题教学设计篇三

教学内容:

人教版《义务教育课程标准实验教科书数学》四年级下册第1。

17、118页例。

1、例2。教学目标:

1.利用生活中的问题,通过动手操作的实践活动让学生发现分的间隔数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。过程与方法:

经历解决实际问题的过程,体验分析解决问题的方法。情感态度与价值观:

体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,收到热爱劳动,保护环境的教育。教学重点:

理解掌握解决问题的规律。教学难点:

能运用规律解决实际问题。教学、具准备:

尺子、树、纸条等。

教学过程:

一、谈话引入,教学“间隔”1.猜一猜。

同学们你们喜欢猜谜语吗?今天老师给你们带来一则谜语你们想猜吗?两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。这是什么呢?(手)。

2、教学“间隔”的含义。

师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。

师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

二、探究新知。

1.小黑板出示:

同学们在20米长的小路一边植树,每隔5米栽一棵。一共需要多少棵树苗?

(1)学生读题,理解题意。

(2)独立思考,再小组合作,探究植树的方案。(3)学生在黑板上展示自己的作品。2.师小结各种方法,并板书。

3、尝试应用。

小黑板出示题目:

同学们在100米长的小路一边植树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?学生独立完成,集体订正。

三、巩固练习。

师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题.学生完成例二后的做一做。

小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,只栽一端的话:棵树=间隔数;两端都不栽的话:棵树=间隔数-1;而且还运用规律解决了生活中的实际问题。

四、全课总结。

1.通过这节课的学习你有什么收获?

2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树的问题等,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

特点。

植树的棵树。

间隔数。

棵数与间隔数的关系两端都栽:

棵数=间隔数+1只栽一端:

棵树=间隔数两端都不栽:

教学反思:

“植树问题”是新课标人教版四年级下册的内容,教材将植树问题分为几个层次:两端都种、两端不种、及封闭图形。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究上都很重要的数学思想方法——化归思想。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

我所执教的这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

四、多角度的应用练习巩固,拓展学生对植树问题的认识。

反思整个教学过程,我认为这节课有以下几点做得比较好:

一、创设浅显易懂的生活原型,让数学走近生活。

创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。

二、注重学生的自主探索,体验探究之乐。

是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后学生动手操作出示实例图示,引导学生在观察、点数形象图形后进行对比,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

三、利用学生资源,加强生生合作。

学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。

不足之处是:

1、自己的普通话不过关。

2、时间没掌握好,学生合作探究时花费时间长了,导致延时。

植树问题教学设计篇四

教学目标:

一、知识与技能性:

1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。

2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

3.能够借助图形,利用规律来解决简单植树的问题。

二、过程与方法:

1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

3.培养学生的合作意识,养成良好的交流习惯。

三、

情感态度与价值观。

通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

教学重、难点。

引导学生在观察、操作和交流中探索并发现间隔数与棵数的规律,并能运用规律解决实际问题。

教学准备:

课件。

教学过程:

一、动手种树,初步感知。

1、创设情景。

2、理解题意。

[出示要求]:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,请按照每隔5米种一棵的要求,设计一份植树方案,并说明你的设计理由。

师:从这份要求上,你能获得哪些信息?

(20米长的小路,一边,每隔5米种一棵)。

3、设计方案,动手种树。

师:了解了信息,请同学们设计一份植树方案。你可以用这条线段来代表20米长的小路,其中每一小段的长度是1厘米,我们用它来表示1米长的小路,请你用自己喜欢的图案或图形来表示小树苗,把你设计的方案画一画。比一比,谁画得快种得好,老师就聘请他作学校的环境设计师。

学生活动,教师巡视指导。

4、反馈交流。

师:根据你的方案,需要种几棵树?

师:同学们真会动脑筋,设计出了这么多的方案。那他们的方案分别是怎样的呢?

请设计师们给大家作一下介绍。

师:他的设计符合要求吗?

师:这位同学是按照每隔5米种一棵的要求来设计的,我们把这个距离叫做间隔距离,在这份设计方案中,有几个间隔距离呢?我们一起来数一数。有4个这样的间隔距离。像这样间隔距离的个数我们又把它叫做间隔数。

师:接下来我们来看看种4棵树的设计方案是怎样的?

生答。

师:最后我们来看看种3棵树的设计方案又是怎样的呢?

生答。

师:就一个要求,同学们就设计出了三种不同的植树方案,真是太能干了!

看来你们都有成为环境设计师的资格。李老师会把你们的方案上交到学校的。

师:第一种方案,在路的头尾都种了一棵树,我们就把它叫做是“两端都种”的植树方案,第二种方案,只种头不种尾或者只种尾不种头,我们就把它叫做是“只种一端”的植树方案,第三种植树方案头尾都不种树,我们就把它叫做是“两端不种”的植树方案。(板书:两端都栽只栽一端两端不栽)。

二、合作探究,

总结。

方法。

1、总结规律。

师:现在我们一起来研究一下,在这三种植树方案中,它们的间隔数和树的棵数之间分别有着什么样的关系呢?同桌同学先讨论讨论,然后完成这张表格。

植树方案间隔数(个)棵数(棵)间隔数与棵数的关系。

学生反馈交流,师生共同完成表格。

师小结:刚才我们通过每隔5米种一棵树的要求,发现了植树的三种方案,并知道了每种方案中棵数与间隔数之间的关系,接下来我们重点来研究“两端都种”的植树问题。

(学生活动后反馈交流)。

师小结。

2、运用规律。

三、开放练习,应用方法。

(1)学生独立解答。

(2)全班交流结果。

2、师:如果两侧都要种,一共需要多少棵樟树苗?(把。

第1。

题中的“一侧”改为“两侧”?)。

(1)学生独立解答。

(2)集体反馈。

(1)学生独立解答。

(2)集体反馈。

师小结。

(1)学生独立解答。

(2)集体反馈。

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

6、书本p122练习二十第4题。

四、课堂小结,课外延伸。

师:通过这节课的学习你有什么收获?

五、板书设计:

(主板书)(副板书)。

间隔距离间隔数棵数。

两端要栽:间隔数+1=棵数1米20个21棵。

只栽一端:间隔数=棵数2米10个11棵。

两端不栽:间隔数-1=棵数4米5个6棵。

10米2个3棵。

植树问题教学设计篇五

1、认识15个生字。

2、朗读课文,背诵课文。

3、感悟课文内容,知道植树的好处,体验植树的快乐,感受自己象小树一样成长。

1、认识15个生字。

2、感悟课文内容,朗读课文,背诵课文。

1、出示图片:画面上画了什么?你了解到了什么?

2、出示课题:我们去植树。

3、齐读课题,教师重点指导“植”的读音。

1、自由读文,找一找哪些读音自己读不准。

2、听老师范读课文,学一学自己读不准的字音。

3、自己在课文中找到要求认的字,并画出词语,再读一读。

4、出示词语卡片进行认读,再出示会认字的卡片进行认读。说说你记住了哪些生字,用什么方法记住的.。

5、再读课文,你想提醒大家注意哪些字的读音?

1、读一读第一段,你了解到什么?

(1)我们是怎样种树的?

(2)边看图边读,你有什么感受?

2、你们想到哪儿去种树?快读第二自然段。

(1)指名读,从马路、小山、河岸的话中你们体会到什么?

(2)教师引读,听了这些感谢的话你们会怎么说?

(3)表演读。

(4)练习背诵。

3、自由读第三四自然段,你又了解了什么?

(1)小树给我们带来哪些快乐?

(2)你们和小树之间有哪些相似的地方?

(3)快带着快乐读读课文吧。

(4)试着背一背这两个自然段。

学习了这一课你有什么想法?

植树问题教学设计篇六

知识技能目标:

2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

过程目标:

2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

3、培养学生的合作意识,养成良好的交流习惯。

情感目标:

1、通过实践活动激发热爱数学的情感;

2、感受日常生活中处处有数学,体验学习成功的喜悦。

学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):

通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。

教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):

一、创设情景,激发兴趣。

1、猜谜导入揭题。

师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。

师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。

【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。

二、经历探究,发现规律。

1、激趣引入,启发探究积极性。

(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。

招聘启示。

学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。

江口小学。

6

设计要求:

在一条长20米的小路一边等距离植树,两端要栽。

【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。

植树问题教学设计篇七

教学目标:

1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

教学重点:理解“植树问题(两端要种)”的特征,应用规律解决问题。

教学过程:

一、初步感知间隔的含义。

1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。

2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。

二、探究规律,解决问题。

1、找出两端都种树的规律。

植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。

三、应用规律,走进生活。。

走进生活:

(一)目标检测:

1.排列在同一条直线上的16棵树之间有()个间隔。2.从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。

(二)闯关题。

2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?

四、总结:通过这节课的学习,你们有什么收获?

:实地考察。

两端要栽:棵数=间隔数+1;

植树问题教学设计篇八

教学内容:

人教版五年级上册第106页内容教学目标:

知识与技能:

通过探索,发现两端都栽的植树问题的规律,并运用这一规律解决实际生活中的问题。

过程与方法:

让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

情感态度与价值观:

让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。教学重点:

引导学生发现并理解全长与间距、间隔数与棵数之间的关系和规律。教学难点:

理解全长与间距、间隔数与棵数之间的规律并运用规律解决生活中的实际问题。

植树问题教学设计篇九

知识目标:

通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;

能力目标:

让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

情感目标:

通过小组合作、交流,培养学生的协作精神。

教(学)具准备:

长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

指名回答,引导学生说出棵数与段数的关系:

两端都种只种一端两端都不种。

棵数=段数+1棵数=段数棵数=段数-1。

请你把这个规律跟同桌说一遍;教师在黑板上贴示。

这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律。

1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

2)、学生以小组为单位操作;

3)、交流:你们小组种了几棵,把圆分成了几段?

4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)。

2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

1)、出示长方形空地题目。

教师巡视指导;

3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

得出:种植路线是长方形的,种植棵数与种植段数是相等的。

4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

5)、展示不同的解决问题的方法,集体讨论判断正误。

3、研究在其他封闭图形上种树:

a、你还想在什么封闭路线上种树?(指名回答)。

b、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

c、小组交流。

4、得出规律:在封闭路线上植树:棵数=段数(板书)。

5、联系:它和非封闭路线上的哪种情况相同?

(告诉学生事物就是这样相互联系的!

6、质疑问难:大家还有什么疑问吗?

如果在不规则的封闭路线上植树,棵数和段数是否相同?

练习第121页的做一做上的习题。

学生尝试练习,交流,指名板书解题方法。

这节课你最大的收获是什么?

植树问题教学设计篇十

教学内容:

教学来源:

人教版小学数学教材第九册第七单元《植树问题》。

五年级学生。

备课人:

张金玲。

基于标准:

数学广角的教学目标可概括为以下几点:

1、感悟重要的数学思想方法;。

2、运用数学的思维方式进行思考,增强分析和解决问题的能力;。

3、在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

教材分析:

《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

学情分析:

学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

学习目标:

1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。

2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

评价任务:

任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

【学习重点】:发现棵数与间隔数的关系。

【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

【教学准备】:课件、小组学习单。

【教学过程】:

一、导入新课。

1、猜谜语,直观认识间隔。

新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。

同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)。

哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。

我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。

你发现什么了吗?(生说)。

的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

二、探究规律实现目标。

1、例题探究。

说起植树问题我们就先从植树谈起吧。请看例题。

a、从题中你能知道哪些信息?谁来说一说?生说,师画。

师小结:

一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

b、算一算,一共要栽多少棵树?反馈答案:

方法1:1000÷5=200(棵)。

方法2:1000÷5=200200+2=22(棵)。

方法3:1000÷5=200200+1=21(棵)。

疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。

三、自主探究,发现规律。

1、化繁为简探规律。

是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。

是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

您可能关注的文档