数学教案相遇问题(优秀15篇)

  • 上传日期:2023-11-23 12:40:16 |
  • ZTFB |
  • 10页

教案是教学活动中的一项重要工作,它是教师在备课过程中,根据教学目标和内容,结合教学方法和手段,编写的一份详细的教学计划和指导材料。教案能够帮助教师全面把握教学进度,合理安排教学内容,提高教学效果。我们每次备课时都需要准备一份教案,这是我们教学工作中的基本要求。教案的编写需要教师对评价和反馈的策略有清晰的规划。请大家阅读下面这些教案范例,结合自己的实际情况进行优化和改进。

数学教案相遇问题篇一

使学生掌握相遇问题应用题的相等关系,含用方程分析解答相遇时求其中一个速度的应用题。

一、复习准备。

1、解下列方程。

(0.9+x)×3=3.6。

0.32×5+5x=4.6。

2、出示准备题。

(1)全体学生审题后列式解答(用两种方法解答)。

(2)解题后口述解题思路:

(58+54)×1.5(先算速度和,在求两地路程)。

58×1.5+54×1.5(先分别算出两车相遇时行的`路程,再求总路程)。

二、学习例6:

1、审题:

(1)与准备题比较不同在哪里?

(2)如果设乙车每小时行x千米,列方程解你会么?

2、解答后反馈:

(1)你是如何解答的?

(58+x)×1.5=168。

(2)还能列出怎样的方程?

58×1.5+1.5x=168。

(2)比较这两个方程在思路上有什么不同?

3、与这两种方程相应的算术解法是怎样的?

4、师小结:用方程解这类应用题一般根据速度和×相遇的时间=两地的路程这个等量关系来列出方程。

三、巩固学习。

1、独立练习:练1练第1、2两题。

全体学生解答后同坐两人互相说说解答的方法步骤。

2、出示试一试。

(1)弄清问题和要求要求。(怎样解方便就怎样解。

(2)解答后讨论:与例6有比较有什么不同?

你是如何解答的?能否求速度和?

(3)你能列出与这两个方程相应的算术解法吗?

1、独立作业。

(1)练一练第三题,学生独立完成。

(2)反馈:与例6比较有什么不同?解题方法呢?

师指出:运动物体行驶的方向不同,行驶的结果也不同,一种是相遇,而另一种则是相离,但计算方法相同。

四、课堂总结。

今天这节课我们学习用方程解什么应用题?这类应用题有有哪几种情况?

列方程解这类应用题应注意什么?

五、布置作业。

作业本[59]。

数学教案相遇问题篇二

使学生掌握相遇问题应用题的相等关系,含用方程分析解答相遇时求其中一个速度的应用题。

一、复习准备。

1、解下列方程。

(0、9+x)×3=3、6。

0、32×5+5x=4、6。

2、出示准备题。

(1)全体学生审题后列式解答(用两种方法解答)。

(2)解题后口述解题思路:

(58+54)×1、5(先算速度和,在求两地路程)。

58×1、5+54×1、5(先分别算出两车相遇时行的路程,再求总路程)。

二、学习例6:

1、审题:

(1)与准备题比较不同在哪里?

(2)如果设乙车每小时行x千米,列方程解你会么?

2、解答后反馈:

(1)你是如何解答的?

(58+x)×1、5=168。

(2)还能列出怎样的方程?

58×1、5+1、5x=168。

(2)比较这两个方程在思路上有什么不同?

3、与这两种方程相应的算术解法是怎样的?

4、师小结:用方程解这类应用题一般根据速度和×相遇的时间=两地的路程这个等量关系来列出方程。

三、巩固学习。

1、独立练习:练1练第1、2两题。

全体学生解答后同坐两人互相说说解答的方法步骤。

2、出示试一试。

(1)弄清问题和要求要求。(怎样解方便就怎样解。

(2)解答后讨论:与例6有比较有什么不同?

你是如何解答的?能否求速度和?

(3)你能列出与这两个方程相应的算术解法吗?

1、独立作业。

(1)练一练第三题,学生独立完成。

(2)反馈:与例6比较有什么不同?解题方法呢?

师指出:运动物体行驶的方向不同,行驶的结果也不同,一种是相遇,而另一种则是相离,但计算方法相同。

四、课堂总结。

今天这节课我们学习用方程解什么应用题?这类应用题有有哪几种情况?

列方程解这类应用题应注意什么?

五、布置作业。

数学教案相遇问题篇三

《数学新课程标准》明确指出,数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习,合作交流的情境,从而激发他们对数学的兴趣,以及学好数学的强烈愿望。要让枯燥的数学课堂焕发生机,具有魅力,必须为学生创设积极思维的情境。这样能使教学过程对学生的注意始终有一种吸引力。当然,老师创设的情境应该贴近学生的生活,符合学生的年龄特征,让它成为一种愉悦的情绪体验和积极的情感体验。我在教学《相遇问题》一课时,就创设了生活情境,让学生自始至终处于一种情境之中,很自然的在解决生活中实际问题的过程中学习新知,使枯燥的数学课堂焕发了生机。

生活是具体的,数学是抽象的。我们应该把数学抽象的内容附着在现实的情境中,让学生去学习从现实生活中产生、发展的数学。在教学中我设计了某同学不小心把同桌的作业带回家这种事,司空见惯。要求学生思考用不同的方法把作业本送回同学的身边。创设了这样的生活情境,激活了学生的生活经验,学生很快想出了解决问题的办法。还编出了学生已熟悉的简单行程问题,既起到了复习的目的,又为后面的学习作好了铺垫,从而更加吸引学生的注意力。知道一人的.速度和时间能求路程,知道路程和速度也能求时间,那么,知道两人的速度和走这段路程所用的时间能求路程吗?怎么求?引发了认知冲突,激发了学生的求知欲望。

在教学过程中创设生活情境,拉近了数学学习和生活的距离,学生在这一情境之中,结合教师的演示和画线段图,主动地利用已有的知识去探索,去发现,理解并学会了新知识。并在学习过程中,学会了与同学合作,独立思考,积极主动地解决问题的方法。

在情境之中教与学,不只是学生学得投入,学得高兴,老师也感觉教得轻松。要想让课上得轻松,让数学教学具有魅力,吸引学生积极主动地参与到学习过程中来,我们很有必要创设情境教学的课堂。

通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识越深刻。

数学教案相遇问题篇四

教学内容:课本应练习七(一)。

教学目标:

1、通过练习使学生直一步认识“相遇问题”的特征,理解数量关系,并能解答求相遇问题应用题。

2、培养学生收集信息、处理信息和解决实际问题的能力。

教学用具:幻灯、小黑板。

教学过程:

一、写出数量关系。

1、路程相遇时间速度和。

路程=-------------------。

相遇时间=-------------------。

2、根据问题写算式。

两人同时从两地相对出发。甲每分钟行80米,乙每分钟行60米。8分钟后相遇。

提问:甲乙每分钟一共行多少米?

相遇时乙行了多少米?

两地之间的路程有多少米?

二、组题练习。

学生读题,讲条件和问题。

独立练习,说清数量关系。

反馈教师板书:(45+50)*2或45*2+50*2。

学生读题,讲条件和问题。

独立练习,说清数量关系。

反馈教师板书:190/(45+50)。

3、比较1、2两题有何异同。

学生同桌互说。

你能把这题改成求相遇时间的应用题吗?

三、变式练习沟通联系。

1、先补条件再列式计算。

四、课堂作业。

练习七(一)第3、4、5、6题。

数学教案相遇问题篇五

教学目标:

1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

教学重难点:

1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

2、理解相向运动中求相遇时间问题的解决方法。

教学过程:

1、说一说速度、时间和路程三者之间的关系。

2、应用。

(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?

(2)一辆汽车每小时行驶40千米,200千米要行几小时?

1、揭示课题。

师:数学与交通密切相联。今天,我们一起来探索相遇问题。

2、创设“结伴出游”的情境。

淘气和笑笑相约出去游玩。

3、引导学生找出有关的数学信息,解决第一个问题。

第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

4、画线段图帮助学生理解第二、第三个问题。

第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。

先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。

1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。

2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

今天这节课我们学习了什么?

教学反思:

数学教案相遇问题篇六

《相遇问题》教学反思这节课准备的时间不短,期间也跟师傅和其他老师讨论了,经过他们的指点,也修改了很多地方,认为这节课能上成功的,可还是失败了。

一节课上完,并没有预期中的轻松,反而觉得心情很沉重,觉得好累,自认为准备的很充分,可到头来却一无是处。这节课失败之处在于教学环节详略不得当。本节课是以前学过的行程问题的延伸,有一定的难度,在推导公式环节,做为基础知识,本应当成重点来讲,我却讲的过于仓促,简单点出就过去了,于是从这里开始,后面学习活动的失败已是注定的了,公式没吃透,不理解,再加上例题与引入的题目有所不同,学生一下子懵了;我心里也犯嘀咕:“前边挺顺的,没讲错呀,学生怎么不会呢?”不会做的学生急在脸上,而我却急在心里,只能硬着头皮再讲,后面的反复讲,完全是弥补前半节课犯下的错误,费时、费力、还低效。

第二次在二班讲授这节课,由于已经有了经验,所以在公式推倒方面,比较注意,配上修改过的课件,将这一环节展开了去讲,讲得比较细,但本来5至7题是准备让学生说解法并说依据的公式,但怕时间不够,只让学生简单说了下所用公式,这点处理的不好,应让学生都说出来,这样印象更深,对题目吃得更透。在讲解例题时,本要放手的更多一点,其实有些学生在分析题目、说解决方法环节已经说的很不错了,但我还是过多包揽,讲得多了,引导的少了。

虽然这一块我已经比较注意了,但总是怕放开后,不好收回来,不觉得就说得多了,没有起到引导者的作用。在今后的备课过程中,要多与其他教师研讨,毕竟一个人不会将问题考虑的非常全面,要多汲取他人的经验,备课时要备教材,还要备学生,了解学生对相关知识的掌握情况,这样,就不会在课堂上发生自己无法预料和解决的问题了。

将本文的word文档下载到电脑,方便收藏和打印。

数学教案相遇问题篇七

【导语】本站的会员“康师傅水”为你整理了“相遇问题数学教后反思”范文,希望对你有参考作用。

《数学新课程标准》明确指出,数学。

教学。

要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习,合作交流的情境,从而激发他们对数学的兴趣,以及学好数学的强烈愿望。要让枯燥的数学课堂焕发生机,具有魅力,必须为学生创设积极思维的情境。这样能使教学过程对学生的注意始终有一种吸引力。当然,老师创设的情境应该贴近学生的生活,符合学生的年龄特征,让它成为一种愉悦的情绪体验和积极的情感体验。我在教学《相遇问题》一课时,就创设了生活情境,让学生自始至终处于一种情境之中,很自然的在解决生活中实际问题的过程中学习新知,使枯燥的数学课堂焕发了生机。

生活是具体的.,数学是抽象的。我们应该把数学抽象的内容附着在现实的情境中,让学生去学习从现实生活中产生、发展的数学。在教学中我设计了某同学不小心把同桌的作业带回家这种事,司空见惯。要求学生思考用不同的方法把作业本送回同学的身边。创设了这样的生活情境,激活了学生的生活经验,学生很快想出了解决问题的办法。还编出了学生已熟悉的简单行程问题,既起到了复习的目的,又为后面的学习作好了铺垫,从而更加吸引学生的注意力。知道一人的速度和时间能求路程,知道路程和速度也能求时间,那么,知道两人的速度和走这段路程所用的时间能求路程吗?怎么求?引发了认知冲突,激发了学生的求知欲望。

在教学过程中创设生活情境,拉近了数学学习和生活的距离,学生在这一情境之中,结合教师的演示和画线段图,主动地利用已有的知识去探索,去发现,理解并学会了新知识。并在学习过程中,学会了与同学合作,独立思考,积极主动地解决问题的方法。

在情境之中教与学,不只是学生学得投入,学得高兴,老师也感觉教得轻松。要想让课上得轻松,让数学教学具有魅力,吸引学生积极主动地参与到学习过程中来,我们很有必要创设情境教学的课堂。

通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识越深刻。

数学教案相遇问题篇八

1、理解“相遇问题”的意义,探究发现“相遇问题”的数量关系,掌握解题思路和解答方法,正确解答求路程的实际问题。

2、感受“相遇问题”的解题方法和乘法分配律之间的联系。

3、培养学生的观察、分析、推理、判断能力,以及自主探究和创新精神。

理解“相遇问题”的意义,掌握解题思路和解答方法。

用列表、画图的方法整理题目中的信息,分析数量关系。

课件

一、谈话引入

1、回答下面各题并说出数量关系。

(1)小明每分钟走70米,走了4分钟,一共走了多少米?

(2)小芳每分钟走60米,走了4分钟,一共走了多少米?

学生回答并说出数量关系,教师板书:速度×时间=路程

2、导入新课。

(1)课件出示教材第68页例题7情境图。

(2)理解“相遇问题”的意义。

请两名学生到讲台前演示当时的情境。

组织学生进行观察,并思考:他们在出发的时间、地点、方向上有什么特点?

追问:他们的距离有什么变化吗?

(3)导入:这两个同学从两地同时出发,相向而行,最后两人在途中相遇,这就是我们这节课要研究的“相遇问题”。(板书课题)

二、交流共享

1、收集信息。

请同学们再次阅读题目,观察情境图,说说题目中的已知条件和所求的问题分别是什么。

已知条件:小明每分钟走70米;小芳每分钟走60米;经过4分钟两人相遇。

所求问题:他们两家相距多少米?

2、整理信息。

(2)学生自主进行信息整理。

教师巡视,进行个别辅导。

(3)组织全班交流。

学生可能用画图或列表的方法进行整理,教师投影展示学生的线段图或表格,组织进行评议和订正。

画图整理:

70米70米70米70米60米60米60米60米

小明家小芳家

?米

列表整理:

小明从家到学校每分走70米走了4分钟

小芳从家到学校每分走60米走了4分钟

3、分析解题思路。

提问:你能根据整理的结果,分析数量关系并确定先算什么吗?

思路一:小明走的路程加上小芳走的路程就是他们两家相距的路程,可以先分别算出小明和小芳走的路程,再把两个人走的路程相加,就是他们两家相距的路程。

思路二:两人4分钟一共走的路程,就是两家相距的路程,可以先算两人的速度和,再把“速度和×相遇时间”就等于总路程。

4、解决问题。

学生根据以上两种解题思路,用两种不同的方法进行解答。

组织汇报交流。

解法一:70×4+60×4

=280+240

=520(千米)

解法二:(70+60)×4

=130×4

=520(千米)

5、观察比较,感受联系。

提问:两种解法有什么联系?

引导学生从以下几方面进行交流:

(1)两种方法的得数相同,可以用什么符号将它们连起来?

(2)观察等式,你想到了哪个运算律?

(乘法分配律)

6、回顾反思,交流体会。

提问:回顾解决问题的过程,你有什么体会?

交流体会:画图和列表都可以帮助我们理解题意;线段图可以帮助我们找到不同的解题方法;要注意寻找不同解法之间的联系。

三、反馈完善

1、完成教材第69页“试一试”。

这道题是例题7的补充,题中一个向东走,一个向西走,可以理解为是“相背而行”,“相背而行”求总路程的方法和“相遇问题”求总路程的方法相同。

2、完成教材第69页“练一练”。

这道题和例题7相似,进一步巩固画线段图整理信息的策略,加深对“相遇问题”的理解。

3、完成教材第70页“练习十一”第2题。

这道题是“工程”问题,也可以用“相遇问题”的解题思路来思考,“第一队每天开凿12米”可以看作是第一队的速度,“第二队每天开凿15米”就看作是第二队的速度,“经过8天正好凿通”可以看作是相遇时间,“这条隧道长多少米”看作是总路程。

通过本课的学习,你有什么收获?还有哪些疑问?

数学教案相遇问题篇九

1)知识与技能:

a:了解相遇问题的应用题的基本结构,掌握解题方法。

b:了解相遇问题应用题的基本结构。

2)过程与方法:

经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主学习,利用网络查询信息,筛选信息,加工信息,构建知识的生长点,同时提高学生的有关信息素养。

3)情感态度与价值观:

1)激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

2)培养学生在生活中提出数学问题的意识。

【学生分析】。

相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

【教学内容分析】。

重点:了解相遇问题的应用题的基本结构,掌握角题方法。

难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

【教学设计思路】。

学生通过实践活动,初步获得一些数学活动的经验,了解数学在日常生活中的简单应用,初步学会与他人合作交流,获得积极的数学学习情感。运用数学知识来观察世界、认识世界、了解世界。

设计思想:(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

【教学策略分析】。

(1)利用网络,建构个性化学习的平台。

(2)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。

【教学过程】。

一、情境导入,复习旧知。

谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。

ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。

根据这个信息,你能提出什么问题吗?

ppt出示:刘老师家距离人民公园有多远?

你会解决吗?

ppt:60×5=300(米)。

这60表示什么?5呢?300呢?

通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

今天我们就在这个关系式的基础上来研究点新问题,好不好?

二、合作探究,构建数学模型。

预设:让学生用语言或者肢体动作来解释这几个词的含义。

把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。

【设计意图】。

此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。

现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。

学生活动,教师巡视。

(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?

预设:出现相遇点在中间和相遇点不在中间两种情况。

【设计意图】。

通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。

3、理解速度和。

老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:

一分钟后他俩分别走了多少?一共走了多少?

两分钟后他俩又走了多少?一共走了多少?

三分钟?四分钟?五分钟呢?

【设计意图】。

通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。

4、画线段图。

你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?

投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?

学生补充和完善自己的线段图。

师出示课件演示画线段图的过程。

5、自主解决问题。

你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。

找2生板书2种方法,点评。

回顾这两种方法,我们是怎么解决相遇问题的?

小结:方法1:路程1+路程2=总路程。

方法2:速度和×相遇时间=总路程。

6、体会线段图的好处。

对比题目文字和线段图,你有什么感觉?

小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。

三、巩固练习,拓展应用。

1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)。

2、数学。

两队分别从两头同时施工,4个月开通。这条隧道长多少米?(只列式不计算)。

刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?

小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。

四、总结。

这节课你有什么收获?学会了什么?

4.小学足球课课件。

5.小学郎诵春风课件。

6.小学美术课件。

7.小学科学课件。

8.小学英语课件。

9.小学生兴趣爱好课件。

10.小学生关于搭石课件。

数学教案相遇问题篇十

两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间的关系。

教学目标:

1、了解相遇问题的特点,并学会解答求路程的相遇问题,《相遇问题》教学设计。

2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

3、培养学生学习数学的兴及趣创新意识。

教学重点:

掌握求路程的'相遇问题的解题方法。

教学难点:

理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

教学时间:一课时。

教具准备:实物投影仪、多媒体cai、小黑板。

教学过程:

一、复习。

1、列式计算。

(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?

(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?

2、板出关系式:速度×时间=路程。

二、引入。

过去,我们研究的是一个物体运动时速度、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的关系。

三、新授。

1、教学准备题。

(1)点击课件中准备题出示题目。

(2)学生理解题意。

(3)找出出发时间、地点、运动方向。

相向而行。

时间间。

(4)点击热键和强调出发时间和运动方向,小学数学教案《相遇问题》教学设计》。

(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什。

么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课。

件演示填空内容。

(7)请一学生上来利用交换性课间完成表格第三行的填写。

(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)。

2、教学例5。

(1)点击新课出示例5。

(2)理解题意。

(3)四人小组讨论:

a、两人是怎样走向学校的?

b、4分钟后两人怎样?

c、两人所行的路程与全路程有什么关系?

(4)学生试做。

(5)用电脑课件演示解题思路并讲评。

(6)学生看书、质疑。

(7)小结:我们解例5时用了哪两种方法?

三、巩固练习。

1、学生做课本第59页的第1题和第2题。

2、利用课件出示选择题:

(1)米(2)1000米(3)无法确定。

四、全课总结。

1、今天学了什么内容?

2、解决这样的问题,我们用了哪几种方法?

3、质疑。

五、聪明题。

数学教案相遇问题篇十一

本课的重点是对得出模型的“解释与应用”,核心的环节是“模型变式、深化认知”。第一题的目的是通过改变出发的地点,让学生通过演示认识到实质上还是相遇问题,使学生对“模型”构成的四个前提条件又进一步的认识。

由于有上节课的教训,本课中我重点让学生读题,理解了条件后,提出了观察的要求,在这样的基础上再让学生作演示,演示后给学生一定的时间思考,效果比上节课好一些。

第二题的目的是改变叙述方式隐藏同时条件,并给出时间条件,求相距的路程,实质上是“改变了模型的应用方向”使学生对模型的应用有一个全面的了解。

在实际教学中教师帮助学生得到线段图和相等关系后,提问:现在已知时间条件,求两家相距的路程,你应该怎么样解。(后面学生独立列式,小组交流思路)而放弃了教案中的探究活动。这样做的原因有两个:1、图和相等关系都是现成的;2、第一个环节耽误了时间。现在反思,原教案中的探究交流活动的确是多余的,因为这里的重点是学生对根据条件和问题灵活的使用模型解决问题,所以采用这种启发式的方法更直接的作用于学生的发展点。

数学教案相遇问题篇十二

本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。

1、 在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。

2、 在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。

3、 在合作交流中体验学习的乐趣,培养学习数学的积极情感。

用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。

理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。

多媒体课件,两个能在一条线上自由活动的小人。

谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。

ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。

根据这个信息,你能提出什么问题吗?

ppt出示:刘老师家距离人民公园有多远?

你会解决吗?

ppt:60×5=300(米)

这60表示什么?5呢?300呢?

通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

今天我们就在这个关系式的基础上来研究点新问题,好不好?

1、初步感知相遇问题

预设:让学生用语言或者肢体动作来解释这几个词的含义。

把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。

此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。

2、合作演绎相遇问题

现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。

学生活动,教师巡视。

(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?

预设:出现相遇点在中间和相遇点不在中间两种情况。

通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。

3、理解速度和

老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:

一分钟后他俩分别走了多少?一共走了多少?

两分钟后他俩又走了多少?一共走了多少?

三分钟?四分钟?五分钟呢?

通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。

4、画线段图

你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?

投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?

学生补充和完善自己的线段图。

师出示课件演示画线段图的过程。

5、自主解决问题

你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。

找2生板书2种方法,点评。

回顾这两种方法,我们是怎么解决相遇问题的?

小结:方法1:路程1+路程2=总路程

方法2:速度和×相遇时间=总路程

6、体会线段图的好处

对比题目文字和线段图,你有什么感觉?

小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。

1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)

2、

两队分别从两头同时施工,4个月开通。这条隧道长多少米? (只列式不计算)

3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)

刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?

小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。

这节课你有什么收获?学会了什么?

德州市实验小学 刘丽

数学教案相遇问题篇十三

这节课的主要内容是相遇问题,会用线段图整理数学信息和问题,重点要让孩子学会分析“相遇问题”的数量关系,能用两种方法解答相遇问题中求总路程的'问题。我个人认为本节课教学设计和组织上很好的体现了新课程标准理念和我校的教学模式。具体体现在:

1、情境的创设贴近生活,从生活实际入手,引导学生将生活问题转化成数学问题,让学生理解“同时出发”、“相向而行”、“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手—抽象成数学问题———尝试解决方案—应用生成的知识解决更多问题“的思路展开教学。此环节的设计有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。

2、引领学生自主探索,搭建数学模型。

本节课,教师要教给学生的,不单单是一个相遇问题的“点”的学问,而是引领学生通过对这个“点”的探究,建构一种数学模型,形成解题策略。张茹老师在设计时大胆放手,首先给学生一个探究提示,放手让学生根据探究的提示,首先自己动手用线段图来整理信息和问题,然后根据线段图进行分析,逐步理解了数量关系,进而列出算式,建构数学模型;最后借助多媒体直观、多彩、形象、生动的演示,更加有效的帮助学生正确地理解数量关系。整个活动过程注重了学生之间自主探索,小组合作的意识,学生生的自主学习地位体现较好。

数学教案相遇问题篇十四

本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。

1、在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。

2、在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。

3、在合作交流中体验学习的乐趣,培养学习数学的积极情感。

用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。

理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。

多媒体课件,两个能在一条线上自由活动的小人。

谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。

ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。

根据这个信息,你能提出什么问题吗?

ppt出示:刘老师家距离人民公园有多远?

你会解决吗?

ppt:60×5=300(米)。

这60表示什么?5呢?300呢?

通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

今天我们就在这个关系式的基础上来研究点新问题,好不好?

预设:让学生用语言或者肢体动作来解释这几个词的含义。

把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。

此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。

现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。

学生活动,教师巡视。

(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?

预设:出现相遇点在中间和相遇点不在中间两种情况。

通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。

3、理解速度和。

老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:

一分钟后他俩分别走了多少?一共走了多少?

两分钟后他俩又走了多少?一共走了多少?

三分钟?四分钟?五分钟呢?

通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。

4、画线段图。

你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?

投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?

学生补充和完善自己的线段图。

师出示课件演示画线段图的过程。

你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。

找2生板书2种方法,点评。

回顾这两种方法,我们是怎么解决相遇问题的?

小结:方法1:路程1+路程2=总路程。

方法2:速度和×相遇时间=总路程。

6、体会线段图的好处。

对比题目文字和线段图,你有什么感觉?

小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。

1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)。

2、

两队分别从两头同时施工,4个月开通。这条隧道长多少米?(只列式不计算)。

3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)。

刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?

小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。

这节课你有什么收获?学会了什么?

德州市实验小学刘丽。

数学教案相遇问题篇十五

整节课吴老师抓住学生喜欢活动的特点,调动学生已有的知识和原有的生活经验,通过学生上台走到老师面前,巧妙地引导学生进入学习中,从表演“同时,相对,相距,相遇”四个词,以及让学生同桌之间“用笔操作模拟行程的路线”等活动,充分体现出数学教学就是数学活动的教学,学生好像不是在上数学课,而是在进行一种表演活动中,自然地突破“相遇问题”的难点。

细品课堂,无不体现了教师对教材的深入理解和精心处理,吴老师的课堂有个巨大的`技巧,在于集中学生的注意力,教师通过参与学生的学习,把自己变成学生,举手提问,从而引导学生提出有价值的问题,让学生明白数学知识的学习,要从能提出有价值的问题开始,再让学生的辩论问题,交流自己的思维过程,从而解决问题。对于本节课的教学重点,正确理解解决相遇问题的方法,吴老师让学生自己选择学习的方法,自己尝试着解决问题,教师则巡视了解学生的方法,有针对性的板演,并交流展示自己的思路,其余学生通过提出有价值的问题,来理解两种解题方法。每个环节真正体现了新课程标准中指出的学生是学习的主体,教师是学习的组织者,引导者与合作者。

“纸花和纸鹤”的问题,吴老师设计了一个美丽的“陷阱”,让学生的错误变得美丽,同时培养学生审题的习惯。吴老师的“相遇问题”的总结环节,有两个学生和教师的互动,把“相遇问题”的多种情况,进一步的深入和提升,从而发散学生的思维。

吴老师的课堂时时处处都体现以学生为本的教学策略,吴老师放下自己的教师身份,让出了自己的位置,真正的做到“让学”。每个数学问题的解决,吴老师都关注学生的学习过程,在生生互动中达到高潮,让每一个学生在不同的方面都得到成功,从而使课堂成为了学生体验成功的课堂,学生不断发展的课堂。

您可能关注的文档