数学建模论文模板范文小学(优秀11篇)

  • 上传日期:2023-11-22 07:20:28 |
  • ZTFB |
  • 11页

总结稿是一种对已经完成的事情进行总结和评价的重要工具。总结可以借鉴他人的经验和观点,但要注重自己的创新和独立思考。每一份总结都有其独特的价值和意义,希望通过范文的分享,能给大家带来不同的启示和思考。

数学建模论文模板范文小学篇一

高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。

数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。

2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。

3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。

3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。

3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。

3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。

3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。

综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。

[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).

[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).

[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.

[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).

数学建模论文模板范文小学篇二

摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。

引言。

随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。

数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。

如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。

2.1计算机软件中数学建模思想的应用。

通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。

经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。

从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。

3.1分析问题。

数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。

在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。

在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。

4结语。

通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。

数学建模论文模板范文小学篇三

对于高职院校的学生来讲,数学在其教学过程中起着基础性的作用,对于学生后续的学习相当关键。但是从现阶段高职院校数学教学的基本情况来看,数学教师的教学方法以及教学策略都相当落后,对于学生数学兴趣的提升造成了不同程度的影响。在这样的背景下,相关专家提出了数学建模的方式,希望以此提升高职院校高等数学的教学效率。本文结合数学建模在高职高专人才培养当中的意义和作用入手,对于其中的应用策略进行全面的分析,希望为相关单位提供一个全面的参考。

随着我国社会的发展,经济产业结构日益升级,因此高等院校的人才需求日益扩大,对于高职教育的发展提供了前所未有的契机。在这样的背景下,从数学建模入手,将其思想融入到高等教育的数学教学当中,对于其中的策略和方法进行全面的研究应该是一项具有普遍现实意义的工作。

从近些年的发展来看,参加过数学竞赛的学生在科研能力等方面都具有比其他同学更强的优势,因此数学建模在提升学生创新能力、提高学生知识水平以及调动学生的.学习兴趣都具有十分重要的意义。比如在解决实际问题的时候,数学建模通过利用各种技巧,可以使得学生分析问题、创造能力得以全面的提升,进而使得学生在摒弃原始思考问题方式的基础上,敢于向传统的知识发出挑战,对于学生的综合能力的全面提升相当关键。其次,数学知识本就源于生活,因此在建模的基础上学生就可以带着问题去思考,这对于数学知识整体性的发挥以及解决问题能力的提升都具有十分重要的意义。最后,面对传统数学的解决方式,很多学生望而生畏,因此主动分析问题的欲望就会受到遏制。在这样的背景下,通过数学建模方式,学生会发现数学方法的灵活性,进而使得他们解决问题的能力得以全面的提升。

3.1制定切实可行的教学大纲,从而使得教学进度得以保障。教学大纲在高职教学当中起着十分重要的作用,这对于教学内容的合理性以及提升学生学习的针对性都具有十分重要的意义[1]。比如在教学高等数学(一)的选修模块时,教学大纲的制定应该结合学生的专业,从而使得学生的数学学习真正取得实效。比如可以为理工类的学生选择无穷级数以及傅里叶变换的内容;机械类的学生选择线性代数以及解析几何作为教学内容,从而使得学生的综合能力得以全面的提升。3.2开展“三段式”的教学模式。数学建模在以解决实际问题为核心的过程中,使得学生分析问题以及组织问题的能力得以全面的提升,这种方式的本质为素质教育,因此不能和现行的其他教学模式分割开来,这就需要相关部门开展“三段式”的教学模式,使得学生的数学兴趣得以全面的提升。其中,第一段需要还原数学知识的原创过程,使得学生明确数学知识的产生过程,进而让学生从生活案例当中发现数学的价值,比如知道极限是由人影的长度变化引起的,导数是由于驾车的速度引入的,使得学生发现知识的价值,进而就会大大提升自己的学习兴趣和探究意识。第二段:讲解数学知识。数学建模是在实际问题当中引入的,因此要通过具体数学知识的讲解使得学生明确数学建模的真正价值,比如在讲解微积分的过程中,可以以“极限-微分-积分”为主线,使得学生对于数学的分析能力真正得以提升[2]。然后在为学生积极引入大量数学图表的基础上,为增强学生的感性认识,进而提升学生的综合能力奠定坚实的基础。第三段:数学知识的运用。随着社会的发展,数学的应用在各行各业都发挥出巨大的作用,因此对于高等数学在实际生活当中发挥出来的作用进行全面的探究是实现这种知识价值的真正途径。在这样的背景下,高等数学教师要将每个知识点的运用真正灌输给学生,比如指数增长在银行计息当中的应用、定积分在学习曲线当中的应用、再生资源在数学开发以及管理当中的应用等等。从而使得学生数学学习中的创新意识以及应用能力得以全面的提升。3.3开设数学实验,提升学生的综合素质。数学建模为学生提供了一种真正的“数学实验”,在这种实验的过程中,学生对于数学知识的发展以及由来过程都会得到进行全面的考虑,这对于他们数学探索意识的提升具有十分重要的意义。另外,在计算机辅助实验的过程中,学生的动脑能力也会得到全面的提升,这对于学生主动的学习数学相当关键。因此在教学过程中,教师要积极利用这种方式对于学生进行全面的培养。

总之,随着我国经济水平的不断提升,社会对于高职院校的重视力度日益提升,因此对于高职院校当中数学建模思想在高等数学教学当中的应用进行全面的分析是实现学生综合素质得以全面提升的关键措施,这对于学生的长远发展也相当关键,相关教育工作者要加大在这方面的研究力度,力求将高职院校的学生培养成为新时代所需要的人才。

[1]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教学中的探讨[j].景德镇高专学报,20xx,(4).

[2]张卓飞.将数学建模思想融入大学数学教学的探讨[j].湘潭师范学院学报(自然科学版),20xx,(1).

数学建模论文模板范文小学篇四

在各领域中,大家都经常接触到论文吧,论文是讨论某种问题或研究某种问题的文章。那么一般论文是怎么写的呢?以下是小编帮大家整理的浅谈如何引导小学生亲历数学建模过程论文,希望对大家有所帮助。

一天,读高中的孩子兴冲冲回家告诉我,他参加数学竞赛获奖了,要参加数模大赛,他还问我什么是数模大赛?我既高兴有惭愧,高兴的是孩子取得好成绩,惭愧自己没有引导自己的孩子和学生在学习的过程中亲历数学建模的过程。

虽然义务教育阶段的数学课程,强调从学生已有的生活经验出发,让学生亲身经历将显示问题抽象成数学模型并进行解释和运用的过程。新课程改革要求每一位教师培养和发展儿童建构数学的意识和能力。可在实际教学中,什么是数学模型?如何引导小学生建立数学模型,与很多老师交流,老师比较困惑。通过自己近几年的探索、实践与反思,对上述问题有了更深刻的理解和认识。

那么,什么是数学模型呢?广义上说,数学中各种基本概念,如自然数、有理数、实数、集合等都是数学模型;从狭义上说,是专指数学符号语言或图像语言刻划表达的某种实际问题的数学结构。在教学相遇问题时,我是这样引导学生亲历数学建模过程的。

(1)创设问题情境,激发学生的求知欲。先请两位同学在讲台的两边同时相向而行,可以让学生重复多走几次。接着问同学们看到了什么?学生的回答迥异,如:两个人面对面在走;他们在中间碰到了;两个人背对背在走等。此时引入相遇问题中的一些条件:同时出发、相向而行、相背而行、途中相遇。当学生对此有一定的了解之后就可以举一个具体的例子来进入教学重点了。例如:甲、乙两人同时从a、b两地相向而行,在距a地800米处相遇,相遇后两人继续前进,甲到达b地、乙到达a地后均立即返回,第二次在距a地600米处相遇。求a、b两地间的路程。

(2)借助线段图,建立模型。将整个过程用线段图来形象地描述,这就是这个相遇问题建立的'数学模型。

(3)研究模型,形成数学知识。以后学生在遇到行程问题的运用题时,在脑海里会有距离、方向、出发地、相遇点等概念,会借助简单的线条示意图分析问题,正确解答行程问题中的相遇问题,为以后学习行程问题中的追击问题打下基础。

通过“行程问题中的相遇问题”的建模教学与实践,能让学生深刻理解数学知识的丰富内涵,感悟数学与现实生活的密切联系。引导学生建立数模的过程,就是实际问题数学化的过程。只要我们不断引导学生亲历数学建模的过程,相信会激发学生的创新能力和培养学生的动手操作能力,我们培养出的学生也不再高分低能。

数学建模论文模板范文小学篇五

众所周知,高等数学是所有自然学科的基础,一个大学生要想在以后的工作、学习中大展宏图,那么就一定少不了坚实的高等数学基础。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力为以后的发展打好数学基础。一直以来,各所高校的教师们都在努力的想办法、找对策,一些实用有效的方法已经提出并且在逐步推广,比如,问题驱动式的教学方法和基于pbl的教学方法等。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。该方法在笔者所教授的班级中已经实际应用过几届,学生普遍反映效果较好,任课老师也认为该方法确实能极大地调动学生的学习积极性。

提到高等数学,学生们的第一反应往往是:各种公式塞满黑板,各种运算充斥脑海;定义、定理、推论一个连着一个;极限、连续、可导可积一个涵盖另一个[1]。和高中数学相比,记忆的负担轻了(实际上是知识点太多,记不住了),而对思维的要求却提高了。对大学生来说,每一次的高数课,都是一次大脑的思维训练,时刻要求精神高度集中,一定要紧跟老师的步划,一旦走神,后面的内容就不知所云了。这样的要求短时间可以达到,长久下去学生们会觉得很辛苦,很有压力,会出现抱怨。笔者碰到过这样的学生,刚开始时,兴致勃勃,雄心万丈,可到后来兴趣索然,马虎应对。怪学生吗?诚然学生有责任,但任课老师也该负很大的责任。作为高等数学的老师我们经常要面对学生提的这些问题:(1)我学的专业和高等数学相差甚远,有可能这一辈子都不会用到高等数学的知识,那我学高等数学的目的何在?(2)老师您天天鼓吹高等数学的强大功能和广泛用途,但是通过一学期的学习,我发现除了对付考试有用,真不知高等数学可以用在何处?这些问题不及时解决,时间长了一定会影响到大学生对高等数学的学习积极性,甚至有可能会产生厌学的情绪和氛围。有些极端的学生,期末考试之后,一听到自己高等数学考过了,立马将高等数学的课本给撕了,可想而知高等数学对其造成的压力有多大[2]。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力地为以后的发展打好数学基础。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。

一、以实际问题反推解决问题时我们需要的高等数学知识。

有这样一个实际问题:报童每天清晨从报社购进报纸零售,晚上将没卖掉的报纸退回给报社。假设报纸每份的购进价为b元,零售价为a元,退回价为c元,自然地有abc。这就是说,报童每售出一份报纸赚a-b元,每退回一份报纸赔b-c元,报童每天如果购进的报纸太少,那么会不够卖,就会少赚钱;如果每天购进的报纸太多,那么会卖不完,将要赔钱。请为报童规划一下,他该如何确定每天购进的报纸份数,以获得最大的收入[3]。

现在我们来反推该问题涉及到的高等数学的知识:首先,通过分析题目可知,问题解决的关键在于——如何确定每天的报纸需求量,注意每天的报纸需求量是随机变化的?解决这个关键问题的知识我们早就掌握了,分别是数理统计中的频率连续化、概率论中的概率密度与期望和高等数学中的定积分[4]。

二、利用高等数学的解决实际问题。

f(r)[4]。如果求出了f(r),那么。

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。

现在我们来求f(r),假定报童已经通过自己的经验和其他渠道掌握了一年(365天)中每天报纸的售出份数,那么在他的销售范围内,每天报纸日需求量r的概率f(r)为:

f(r)=,r=(0,1,2,3,…)。

其中k表示为卖出r份的天数。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。

通过上面的分析,可知实际问题归结为,在p(r)和a,b,c已知时,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。

令=0,得到=,又因为p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。

在等式(4)中,p(r)和a,b,c均为已知,所以利用定积分的知识一定可以求出n。也即可以确定每天购进的报纸份数,使报童每天获得最大的收入。

三、利用现实问题,让学生学会思考,给他们提供创造成就感的机会。

通过上面碰到的实际问题,可以很容易地说服同学们静下心来好好学习高等数学。因为通过实际问题的求解,学生们了解到了,要想解决一个实际问题(哪怕是很小的问题),也需要大量的高等数学知识的储备;学生们也大概领略到了高等数学的用途与功能。这样的教学方法简单、直接,胜过老师课堂上反复的唠叨与强调。有了这样的一些实际问题,老师们就可以大胆地将数学建模思想引入高等数学的教学当中,让学生们在解决实际问题中学会思考,掌握知识,提高能力。

通过训练后,碰到实际问题,同学们会自然的想到我们的教学方法:(1)这些实际问题涉及到的高等数学知识?那些自己掌握了,那些还没有弄明白,学要加强学习。(2)知识点找到后,如何建立起数学与实际问题求解之间的关系?也即如何建立数学模型。(3)除了老师给的题目,自己本专业中的实际问题,能否用高等数学的知识去解决?通过思考、分析、解决这些问题,学生们会有一种创造创新的成就感,会愿意自主学习,自然而然其学习高等数学的积极性也会大大提高了。

数学建模论文模板范文小学篇六

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化。

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用。

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施。

(一)在公式中使用建模思想。

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的'教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式。

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛。

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语。

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献。

[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[j]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。

[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[j]。教育实践与改革,20xx(04):177—178,189。

[3]杨四香。浅析高等数学教学中数学建模思想的渗透[j]。长春教育学院学报,20xx(30):89,95。

[4]刘合财。在高等数学教学中融入数学建模思想[j]。贵阳学院学报,20xx(03):63—65。

数学建模论文模板范文小学篇七

运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.

数学建模论文模板范文小学篇八

高校学生社团是一种具有共同兴趣爱好的学生自发组织的开展一些艺术、娱乐和学术型的活动的团体。学生社团以其鲜明的开放性、自主性以及多样性等特点,为一些有特长的学生提供了广阔的舞台,让这些学生可以更好的发挥自己的才能,促进其更好的成才。全国大学生数学建模竞赛是最早由教育部工业与数学应用学会共同承办的一个科技性的赛事,该比赛要通过数学和计算机的知识来解决实际生活中的问题,由于其特有的比赛形式,使得高职院校在全校范围内直接选拔参赛队员是件费神的事情,因此,为了更好的为数学建模竞赛选拔人才,激发学生的学习兴趣,学术性社团“数学建模协会”也就应运而生。数学建模协会的成立,可以更好的为学生提供一个展示自己的机会,可以增强学生对数学的学习兴趣,培养学生应用数学解决实际问题的能力,激发学生的创新思维,为数学建模竞赛选拔人才。本文主要以西安航空职业技术学院数学建模协会为例,探讨高职数学建模社团活动开展的形式和意义。

(一)数学建模社团有利于数学建模竞赛的开展。高职数学建模协会为数学建模竞赛搭建了一个平台,是数学建模竞赛强有力的后盾,数学建模竞赛成绩的取得与这个平台密不可分,只有充分发挥数学建模社团的作用,才能源源不断的为数学建模提供人力和智力保障,才能更好的推动高职数学的学习氛围。1、数学建模协会起着动员宣传的作用从没听过,到知道,在到熟悉,只有通过大力宣传和动员,才能让更多的人了解数学建模,让更多优秀学生参加到数学建模竞赛中。大学校园中有许多数学爱好者,他们对数学建模也有一定的认识,只要有参加数学建模活动的愿望的,都可以利用数学建模协会招新的机会,加入数学建模创新协会。将成绩优秀的学生邀请加入数学建模协会,对进一步扩大数学建模协会,夯实数学建模基础,起着举足轻重的作用。2、数学建模协会起着知识传播的作用高职院校学生在校学习时间较短,学业较为繁重,课余时间较少,数学建模培训的时间不足,无法让学生在短时期内掌握较多的数学建模相关知识。因此,利用数学建模协会活动可以开展数学建模课程的培训工作,普及数学建模相关知识。采用“老带新”的模式进行数学建模知识的普及。通过制定系统的培训方案,在每年秋季竞赛后,参加过竞赛的同学对新入协会的成员可以进行初级培训,为今后的竞赛奠定基础。3、数学建模社团起着选拔学生的作用每年数学建模竞赛的队员需要通过校内赛等形式进行选拔,此时,数学建模协会就起着校内赛命题及选拔队员的作用,当然这种选拔方式也有的弊端,就是所有队员都是来自校内赛成绩优秀的学生,而校内赛发挥不理想但建模能力突出或计算机技术水平优秀的学生就没法参加数学建模竞赛。为确保每一位有能力的学生都能够加入到建模竞赛队伍中来,可以通过校内竞赛与建模协会推荐两者相结合的方式选拔建模竞赛学生,以确保最优优秀的学生参加数学建模竞赛。(二)数学建模社团有利于大学生综合素质的培养。(1)数学建模社团属于专业的学术性社团,成立的目的是为了参加全国大学生数学建模竞赛,数学建模社团活动的趣味性和实践性可以提高学生的学习兴趣,培养学生自主学习的能力,增加学生参与竞赛的热情。社团活动中的培训使学生可以更好的应对竞赛,取得更好的成绩。另外,竞赛之余还可以进行其他领域的学术交流,比如计算机,经济,工程等领域,良好的交流氛围激发学生的创新思维和意识,从而培养他们的创新能力。(2)数学建模社团是学生自发组织的服务学生的群体,除了学术研究之外,还可以进行一些创新创业的活动,具有更多的实践的机会。比如,可以利用平时社团所学的知识,以团体的形式进行一些数据处理的校企合作;也可以以微信平台和微信群等发布一些数学建模相关的微课等,进行一些微信群讲座等等。这样可以让学生真正体会到数学的用处,达到学以致用的效果。(3)数学建模社团是学生自发组织的学术性社团,社团的组织机构都是学生在担任,社团的活动也都是学生在协调策划,甚至很多时候社团的老成员都可以辅助老师进行社团的一些学术性的讲座。因此,在学习的同时还锻炼了他们的处事应变能力团队合作的能力,可以说提高了学生的综合素质。

(一)数学建模社团的管理形式。数学建模协会作为一个学生群体组织,需要好的制度和管理模式。以笔者所在学校为例,数学建模创新协会具有自己的一套规章管理制度;在管理形式方面是以“三个管理面”来进行社团管理和学术交流的,具体如下:1、学术交流面这个主要是通过“社团内部进行学术交流活动”和“老带新培训”两部分组成,内部的交流活动主要是学生之间的相互沟通和交流,以及不定期的邀请指导教师和外校专家做一些数学建模报告。老带新培训是指社团主席团成员(一般是参加过前一年全国大学生数学建模竞赛的学生)为新入社团的学生进行培训,培训的内容基本上都是之前指导教师对他们集训时的内容,这种培训方式可以提升社团成员的授课和理解问题的能力,对于在校大学生来说是一次很好的锻炼。2、网络交流面采用qq群,网络空间和微信公众平台等开展社团成员之间的交流互动,社团宣传。笔者所在学校的数学建模创新协会每一届社团都有相应的qq群,另外,在20xx年也积极申请了微信平台,目前的'关注量也在800余人,微信平台的建立可以更方面使大学生关注数学建模相关信息,尤其是对大一新生可以更多的取了解数学建模,扩大数学建模的受益面和影响力。力求在大学生中营造一种“人人知数模,人人爱数模,人人参与数模”的良好的教育环境,使建模活动广泛化、群众化。3、交流互访面开展研讨会,专家报告会,社团联谊会等交流活动,既可以丰富数学建模社团学生的知识面,又能促进数学知识的理解和吸收,通过与其他社团的联谊,丰富了社团学生的业余生活,又能学习其他社团好的管理经验,促进社团管理的制度化、规范化、专业化,也只有通过不断的学习,不断的交流,才能真正“走出去”,建立一个管理完善,富有成效的学生社团。(二)数学建模社团的特色活动。数学建模社团在开展学术活动和辅助教师进行竞赛培训的同时,还不定期的举行一些活动,在提高学生学习兴趣的同时也以扩大了数学建模的影响力。以笔者坐在学校为例,每年可以开展一系列的数学建模活动。比如,数学建模创新协会纳新,数学建模创新协会趣味运动会,数学科技节,趣味数学知识竞赛,数学建模经验交流会,数学建模校内赛,数学辅导周,数学建模专题讲座。这些社团活动贯穿整个学年,不仅可以“由点及面、由浅入深”的对全国大学生数学建模竞赛进行宣传,在最大的范围内,提升数学建模大赛的影响力及参与度,成效较好。而且让枯燥的学术型社团变得丰富多彩,成为学生课后获取知识的一种平台,同时也是社团蓬勃发展的利器。

总之,数学建模社团活动的开展,有利于培养学生的创新意识和思维,有利于激发了学生的学习兴趣,有利于丰富学生的课后生活,有利于调动了学生参加学术型社团的积极性,同时也是高职院校组织参加数学建模竞赛的强有力的后盾。

[1]胡建茹,王摇娟.加强专业社团建设推进大学生创新实践能力培养[j].中国石油大学学报:社会科学版,20xx(12)。

[2]王珍娥,宋维,孙洁.数学社团建设的探索与实践[j].机械职业教育,20xx(7)。

[3]李湘玲,王泳兴.大学生社团发展与创新型人才培养互动机制研究:以吉首大学为例[j].黑龙江教育,20xx(11)。

[4]孙浩,叶正麟.西北工业大学数学建模创新教育之探索[j].高等数学研究,20xx(4)。

作者:张兰单位:西安航空职业技术学院通识教育学院。

数学建模论文模板范文小学篇九

为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。

作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。

通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。

加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。

总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。

[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).

[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).

数学建模论文模板范文小学篇十

信息化时代,数学科学与其他学科交叉融合,使得数学技术变成了一种普适性的关键技术。大学加强数学课程的应用功能,不但可以为学生提供解决问题的思想和方法,而且更为重要的是可以培养学生应用数学科学进行定量化、精确化思维的意识,学会创造性地解决问题的应用能力。数学建模课程将数学的基本原理、现代优化算法以及程序设计知识很好地融合在一起,有助于培养学生综合应用数学知识将现实问题化为数学问题,并进行求解运算的能力,激发学生对解决现实问题的探索欲望,强化数学课程本身的应用功能,凸显数学课程的教育价值,适应大学数学课程以培养学生创新意识为宗旨的教育改革需要。

大学传统的数学主干课程,如高等数学、线性代数、概率论与数理统计在奠定学生的数学基础、培养自学能力以及为后续课程的学习在基础方面发挥奠基作用。但是,这种原有的教学模式重在突出培养学生严格的逻辑思维能力,而对数学的应用重视不够,这使得学生即使掌握了较为高深的数学理论,却并不能将其灵活应用于现实生活解决实际问题,更是缺乏将数学应用于专业研究和军事工程的能力,与创新教育的基本要求差距甚远。教育转型要求数学教学模式从传统的传授知识为主向以培养能力素质为主转变,特别是将数学建模的思想方法融入到数学主干课程之中,在教学过程中引导学生将数学知识内化为学生的应用能力,充分发挥数学建模思想在数学教学过程中的引领作用。数学课程教学改革要适应这一教学模式转型需要,深入探究融入式教学模式的理论与方式,是推进数学教育改革的重要举措。

2.1理清数学建模思想方法与数学主干课程的关系。数学主干课程提供了大学数学的基础理论与基本原理,将数学建模的思想方法有机地融入到数学主干课程中,不但可以有效地提升数学课程的应用功能,而且有利于深化学生对数学本原知识的理解,培养学生的综合应用能力。深入研究数学主干课程的功能定位,主要从课程目标上的一致性、课程内容上的互补性、学习形式上的互促性、功能上的整体优化性等方面,研究数学建模本身所承载的思想、方法与数学主干课程的内容与逻辑关系,阐述数学建模思想方法对提高学生创新能力和对数学教育改革的重要意义,探索开展融入式教学及创新数学课程教学模式的有效途径。

2.2探索融入式教学模式提升数学主干课程应用功能的方式。融入式教学主要有轻度融入、中度融入和完全融入三种方式。根据主干课程的基本特点,对课程体系进行调整,在问题解决过程中安排需要融入的知识体系,按照三种方式融入数学建模的思想与方法。以学生能力训练为主导,在培养深厚的数学基础和严格的逻辑思维能力的基础上,充分发挥数学建模思想方法对学生思维方式的培养功能和引导作用,培养学生敏锐的分析能力、深刻的'归纳演绎能力以及将数学知识应用于工程问题的创新能力。

2.3建立数学建模思想方法融入数学主干课程的评价方式。融入式教学是处于探索中的教学模式,教学成效有待于实践检验。选取开展融入式教学的实验班级,对数学建模思想方法融入主干课程进行教学效果实践验证。设计相应的考察量表,从运用直觉思维深入理解背景知识、符号翻译开展逻辑思维、依托图表理顺数量关系、大胆尝试进行建模求解等多方面对实验课程的教学效果进行检验,深入分析融入式教学模式的成效与不足,为探索有效的教学模式提出改进的对策。

3.1改革课程教学内容,渗透数学建模的思想方法。传统的数学主干课程教学内容,将数学看作严谨的演绎体系,教学过程中着力于对学生传授大学数学的基础知识,而对应用能力的培养却重视不够。使得本应能够发挥应用功能的数学知识则沦为僵死的教条性数学原理,这失去了教学的活力。学生即使掌握了再高深的数学知识,仍难以学会用数学的基本方法解决现实问题。现行的大学数学课程教学内容中,适当地渗透一些应用性比较广泛的数学方法,如微元法、迭代法及最佳逼近等方法,有利于促进学生对数学基础知识的掌握,同时理解数学原理所蕴涵的思想与方法。

这样,在解决实际问题的时候,学生就会有意识地从数学的角度进行思考,尝试建立相应的数学模型并进行求解,拓展了数学知识的深度与广度,提升了学生的数学应用能力四、结语数学建模是数学科学在科技、经济、军事等领域广泛应用的接口,是数学科学转化成科学技术的重要途径。在数学主干课程中融入数学建模的思想与方法,可以推动大学数学教育改革的深入发展,加深学生对相关知识的理解和掌握,有助于从思维方式上培养学生的创新意识与创新能力。

此外,数学建模思想方法融入教学主干课程还涉及到许多问题,比如数学建模与计算技术如何有效结合以进行模拟仿真、融入式教学模式的基本理论、构建新的课程体系等问题,仍将有待于更深入的研究。

数学建模论文模板范文小学篇十一

摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。

经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。

数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。

二、经济问题数学模型的建立。

经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。

三、建模举例。

四、结语。

综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。

您可能关注的文档