方程求根心得体会和方法 方程求根心得体会和方法总结(九篇)

  • 上传日期:2023-01-08 15:36:38 |
  • ZTFB |
  • 9页

我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。

推荐方程求根心得体会和方法一

本节是在前面已经讨论过由实际问题列一元一次方程和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题.本节的问题情境与实际情况更接近,因此具有一定难度,根据本例题特点,我设计如下教学目标:在教学过程中理解有关商品销售中所涉及的公式,进而培养学生走向社会,适应社会的能力.

教学重点和难点、关键:

重点:进一步体现一元一次方程与实际的密切关系,渗透数学建摸思想,培养运用一元一次方程分析和解决实际问题的能力.

难点是正确地列方程。

关键是弄清问题背景,分析清楚有关数量关系,按问题找出可以作为列方程依据的主要相等关系.

二、说教学方法。

在教学过程中,主要采用启发式教学和合作探究式教学方法的综合运用。

三、说学生的学法。

学生根据教材中的问题,采用小组合作探究,从而解决问题,通过教师引领,学生主动参与,从而顺利而充满激情地完成教学.

四、设计思路。

我利用提纲中的几个简单的习题,充分发挥学生的合作交流的意识.让学生体会数学在实际生活中的应用.最后通过研究书中的盈亏问题,可以增加学生的经济知识和经营意识.使他们能更了解市场运作.

五、教学过程

整个教学过程都以小组合作探究的形式进行,充分体现小组合作探究的作用.教师利用提纲中的习题由简单到复杂,采用层层深入的教学模式。整个过程都是由教师适当引导学生合作完成,课堂气氛比较活跃,学生的参与度很高。

推荐方程求根心得体会和方法二

我所任教的五年级班共有学生xx人。一部分的学生学习态度端正,有着良好的学习习惯,空间观念较强。上课时都能积极思考,主动、创造性的进行学习。但从上学年的知识质量验收的情况看,学生的存在明显的两极分化,后进生的面还是大,针对这些情况,本学年在重点抓好基础知识教学的时,加强后进生的辅导和优等生的指导工作,全面提高两班的合格率和优秀率。

本册教材内容包括:小数的乘法和除法;整数、小数四则混合运算和应用题;多边形面积的计算;简易方程四个部分。

(一) 小数的乘法和除法

本单元是在学生掌握了整数的四则运算、小数的意义和性质以及小数加减法的基础上进行教学。这部分的知识在本册乃至于整个小学阶段中取着举足轻重的作用。本单元的应用题主要是复习已学过的两、三步应用题,以培养和提高学生分析和推理能力,为下一单元学习新的应用题作准备。

本单元的教学重点:理解、掌握小数乘、除法的意义及计算法则;难点:小数除法的计算方法;关键:小数点的处理。

(二) 整数、小数四则混合运算和应用题

本单元包括整数、小数四则混合运算和应用题两节。整数、小数四则混合运算是在学生已掌握整数混合运算和小数四则运算的基础上,对整数、小数四则混合运算进行概括的总结和提高。应用题前一部分是在已学知识的基础上整理总结解应用题的一般方法和步骤,扩展一般应用题的范围,后一部分是教学以反应两个物体运动为内容的一些行程应用题。

本单元的教学重点:掌握整数、小数四则混合运算的运算顺序,熟练进行计算;难点:列综合算式解答三步计算的应用题;关键:掌握列综合算式解答文字题。

(三) 多边形面积的计算

本单元是在学生已经掌握平行四边形、三角形、梯形的特征以及长方形、正方形面积计算的基础上进行教学,这是今后学习圆面积和立体图形面积的基础。

这单元的教学重点:计算平行四边形、三角形和梯形的面积;难点:多边形面积公式的应用;关键:公式的推导过程。

(四) 简易方程

本单元是在学生已学了一定的算术知识,已初步接触了一些代数知识的基础上进行学习用字母表示常见的数量关系,解简易方程和方程解应用题等代数初步知识,比和比例等内容良好基础。

教学重点:理解方程的意义,会解简易方程;难点:初步学会列方程解两、三步计算的应用题;关键:用字母表示数,表示常见的数量关系。

推荐方程求根心得体会和方法三

教学目的:

使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。回根据字母所取的值,求含有字母的式子的值。

使学生加深理解方程的意义,会解简易方程。

教学过程

一、复习用字母表示数。

教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。我们通过下面的例子,边回忆、边总结以前学过的内容和方法。

教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写?s乘以h可以怎样写?(a乘以4.5可以写成a×4.5或a·4.5,不可以写成a4.5。s乘以h可以写成s·h或sh。)

教师指出:除了不能写成a4.5以外,其他都是对的。

用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。

已知单价和数量,求总价的公式;

已知总价和数量,求总价的公式;

已知总价和单价,求数量的公式。

如果每只圆珠笔的价钱是3.75元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?

教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。写完后,集体订正。

教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。

教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。)

一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。

教师指名回答。

80+12a

a=15时,80+12a=80+12×15=260

答:商店一共有260千克桔子。

作教科书第144页“做一做”的题目。

第1题,教师让学生自己做。巡视时,注意观察学生对“a的3倍”与“a的3倍”的结果是怎样选择的。做完后集体订正。

二、简易方程

复习方程的概念。

教师出示复习题:

下列等式,那些是方程,那些不是方程?并说明理由。

19+25=43 5x+4x+8=35 x-2=8

4×3-18÷3=6 3x+5=7 a+4

学生指出:3x+5=7, 5x+4x+8=35, x-2=8是方程。它们是含有未知数的等式;其他的不是方程。

教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数,同时又是一个等式。

教师:大家会不会解方程?一起解答方程x-2=8。学生解答后,指名回答方程的解(x=10)教师:x=10是方程x-2=8的解。使方程左右两边相等的未知数的值叫做方程的解。求方程的解的过程叫做解方程。我们把方程的解和解方程这两个概念要分析清楚。

复习解简易方程。

例3 解下列方程,并写出检验过程。

3x+5=7 5x+4x+8=35

学生做题时,教师巡视,注意帮助有困难的学生和及时纠正错误。集体订正时,让学生将“ 5x+4x+8=35”的解答过程写在黑板(或投影片)上,说明解答过程中运用到什么运算定律和运算关系。

教师:在解方程的过程中,我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。

做教科书第145页上面的“做一做”的题目。

第1题,让学生独立完成。集体订正时,指名回答并说明理由。

第2题,让学生独立完成。集体订正时着重说明有3到小题,在解答中出现3x=150,方程的解都是x=50。

例4 一个书的1/2比这个数的25%多10,这个数是多少?

让学生独立解答。订正时。指名用口算检验。

做教科书第145页下面的“做一做”的题目。

让学生独立完成。集体订正时,让学生说明哪一题列方程比较容易,哪一题列算式比较容易。

三、小结

教师引导学生分别按照复习的过程叙述和小结复习的内容。

四、作业

练习三十四的第1~4题。

推荐方程求根心得体会和方法四

一、教材分析

1、教材的地位和作用

一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

2、教学目标及确立目标的依据

九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

3、重点,难点及确定重难点的依据

“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

二、教材处理

在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

三、教学方法和学法

教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

四、教学手段

采用投影仪

五、教学程序

1、新课导入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)

(2)列方程解应用题的方法,步骤?(并引例打基础)

课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)

设出求知数,列出代数式,并根据等量关系列出方程

推荐方程求根心得体会和方法五

尊敬的各位评委:

大家好,我今天说课的课题是人教版数学七年级上册第三章第四节《实际问题与一元一次方程》。下面我将从教材分析、学情分析、教法与学法、教学过程和板书设计五个方面对本节课的设计进行说明。

首先我们来看教材分析,教材分析包括3部分。

1、教材的地位和作用

本节课是在学习了解一元一次方程的基础上,进一步探究如何找出实际问题中的相等关系,学习如何用一元一次方程解决实际问题,是实际问题与一元一次方程的第一课时,示范性强,同时也为下节课探究问题做铺垫,在本章中起着承上启下的作用。

根据新课标素质培养的要求通过本节课的学习,我认为应该达到以下教学目标

2、教学目标

(1)知识目标:

分析实际问题,寻找相等关系,建立方程模型,并根据问题的实际背景进行检验。

(2)能力目标:

培养学生分析问题,解决实际问题,归纳整理的能力。

(3)情感目标:

培养学生勤于思考、乐于探究的学习习惯,体会数学的应用价值,激发学生学习兴趣,培养学生的爱国情怀和自强不息的精神。

3、教学的重点及难点

本着课程标准,在吃透教材的基础上,我认为本节课的重点为

重点:列出一元一次方程解决实际问题

在列方程解应用题的时候找出最正确的等量关系式十分重要,因此本节课的难点为

难点:找出问题中的相等关系

下面再从学情分析谈一谈

七年级学生初学列方程解决实际问题时,往往弄不清解题步骤,不设未知数就直接进行列方程,我认为学生可能存在两方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

还可能存在分析问题思路不同,列出方程不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

(基于以上我对教材和学情的分析,我采用了以下教学方法,和学法指导)

教法:

教学过程中坚持启发式教学的原则,采用讲练结合、探索发现法进行教学,引导学生从实际生活中抽象出数学问题,充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。

学法:让学生经历由简单到复杂的学习过程,教师设疑提问,学生自己体会解决实际问题的过程并鼓励学生自己归纳总结。

通过以上我对教材、学情、教法与学法的分析,我设计了下面的教学过程:

1、创设情境,引入新课

本节课开始我将讲解华罗庚的生平,引入新课,这样可以更好地激发学生的学习兴趣

国际数学家华罗庚,1910年出生于江苏金坛县,被誉为中国现代数学之父。初中毕业后因交不起学费而中途退学,但经过顽强自学完成了高中和大学的全部课程,20岁时进入清华大学工作,6年后前往剑桥大学,他一生的1/5的时间在国外学习。此后,他毅然放弃了美国的优厚待遇,将余生的34年献给了祖国。

(1)提出问题

你能算出华罗庚活了多少岁吗?

(2)探究问题

a.他的一生分为几个重要阶段?

b.如果设他活了x岁,各个阶段如何表示?

c.你能根据题意找出相等的关系吗?

(3)解决问题

他的一生分为了三个阶段:

国内求学工作+出国学习+归国工作=他的一生

学生经历提出问题、探究问题、解决问题的过程,体会用一元一次方程解决简单实际问题的步骤,让学生从大段文字中提取有用的数学信息,培养学生的分析问题、寻找相等关系、解决问题和提取信息的能力,并且我认为可以趁此机会对学生进行爱国主义和自强不息的精神教育,这样可以实现情感目标,更好的体现新课标的教学理念。这就是本节课要学习的实际问题与一元一次方程问题,接下来我将对例题进行讲解,例1是配套问题,

2、例题讲解

例1、某车间有22名工人,每人每天可以生产1200个螺钉或20xx个螺母。1个螺钉需要配2个螺母。为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人个多少名?分析:

每天生产的螺母数量是螺钉数量的2倍时,它们刚好配套。

螺母的数量=螺钉数量的2倍是本题中特有的相等关系,是解决本例题的重点所在。

每天每人的工作效率x人数=每天的工作量(产品数量),是工作问题中的基本相等关系,上述两者结合起来就能列出方程。本题有两个未知数,在此可以鼓励学生勤于思考,设其中哪个为x都可以。

通过对例1的讲解学习,可以使学生自己寻找问题中的基本相等关系,引导学生体验用一元一次方程解决实际问题的基本过程,让学生突破找相等关系的难点。

为了加深学生对解题过程的理解及自我分析问题能力的`提高,下面安排了例2。我认为例2可以采取教师引导,学生为主体自己写出分析过程,从而师生共同解决实际问题。

例2、整理一批图书,由一个人做需要40 h完成。现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。假设这些人的工作效率相同,具体应先安排多少人工作?根据我对本课的理解,我认为此题关键在于以下三个问题

1、引导学生自己找出正确的基本相等关系两时段的工作量之和=总工作量

2、使学生理解在工程问题中把全部工作量简单表示为1,那么人均效率是个平均值,它

表示平均每人每单位时间完成的工作量

3、工作量=人均效率x人数x时间

解决了以上3个问题,题目自然迎刃而解,通过对稍微增加难度的例2的学习探究,可以更进一步提高学生寻找相等关系的能力以及分析解决问题的能力,再次经历设、列、解、检、答的过程,以便下一步的过程归纳

下面让学生由以上三道题的过程,自己试着总结出用一元一次方程解决实际问题的基本过程。

3、归纳总结

这样设计,可以让学生自己讨论,自己归纳,从而提高学生的归纳概括能力

4、巩固练习

接下来通过巩固练习,让学生自己练习两道问题,第一题是例1的配套问题,第二题是例2的工程问题,检查学生对本节课的掌握情况,以便我可以及时进行补充,也起到了加深理解,巩固知识的作用。(检查学生对本节课的掌握情况,对学生易错点进行纠正,并再次强调如何列一元一次方程,提高学生解题能力)

5、小结反思

通过以上的学习,我认为可以让学生自己总结本节课的学习内容,进一步提高学生的归纳概括能力。

6、布置作业

让学生举一反三,熟练掌握本节课的知识。

下面是我的板书设计,呈现给大家的是本节课的主要内容,通过板书的直观形象可以再次加深学生对知识的理解和记忆

我的说课到此结束,谢谢大家!

使学生能在更加贴近实际生活的问题情境中运用所学数学知识,提高分析问题和解决问题的能力。

推荐方程求根心得体会和方法六

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

推荐方程求根心得体会和方法七

1、本章的主要内容:

(1)一元二次方程的有关概念;

(2)一元二次方程的解法,根的判别式及根与系数的关系;

(3)实际问题与一元二次方程。

2、本章知识结构图:

3、教学目标:

(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;

(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;

(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4、本章的重点与难点

本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:

(1)分析方程的特点并根据方程的特点选择合适的解法;

(2)实际背景问题的等量分析,设元列一元二次方程解应用题。即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。同时,还要根据实际问题的意义检验求得的结果是否合理。

1、重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

2、本章为学生提供了许多活动,教学中应让学生进行充分的探索和交流。

如在一元二次方程解法的教学中,教师不要采用先示范,然后让学生模仿的方法,而应通过恰当的引导,鼓励学生先独立探索解法,并相互交流。在一元二次方程应用的教学中,应鼓励与提倡解决问题策略的多样化,学生的解法只要合理,就给以肯定,不必拘泥于教科书的解法。

3、注重数学思想方法的渗透。

数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程。方程是含有未知数的等式,它们表达了数量之间的相等关系。正如前面所学习过的其他方程,一元二次方程可以表达许多实际问题中包含的数量相等关系,因而也可以作为分析和解决这些问题的重要数学模型。从反映方程与实际问题的密切联系的角度看,本章与本套教科书前面有关方程的各章是一脉相承的,实际问题情境始终贯穿于本章之中。

这就是所谓的“数学化”过程,其中渗透了符号化和数学建模思想,列方程解决实际问题时,要首先分析题意,找出题中的等量关系。分析过程中,借助示意图或表格常常能使抽象的数量关系具体化、形象化,把数与形结合起来是解决数学问题的一个有效的思想方法。

解一元二次方程的每一种方法都渗透着“转化”思想。开平方法、因式分解法通过“降次”,把一元二次方程转化成两个一元一次方程来解;配方法把方转化成的形式,这是数学形式的转化;而公式法直接利用公式把方程中的“未知”转化为“已知”。这种思想,学生可以运用旧知识来解决新问题,把“不会”变为“会”,它在将来学习二次函数、二次不等式等知识时具有广泛的应用,在教学中,教师应注意引导学生体会这种思想。

4、重视一元二次方程的特殊性,突出解一元二次方程的基本策略以及解法中的关键步骤。

在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),并且学习了可以化为一元一次方程的分式方程,他们对于解方程的基本思路(使方程逐步化为的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。

一元二次方程与前面的方程相比,特点在于未知数的次数是2(二次),新的问题是如何将一元二次转化为学过的一元一次方程,这就是“降次”及“转化”的思想。

5、注意把握教学要求。

在一元二次方程解法的教学中,应避免过多地求解没有实际背景的一元二次方程,进行单纯的形式化的重复操练,应注意将知识技能的培养寓于实际应用问题的解决过程中。

关于一元二次方程根的判别式、一元二次方程根与系数的关系,根据《课标》要求,教学中只做适当的补充。

22.1一元二次方程:

本节1课时,以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式;给出一元二次方程根的概念,并提出一元二次方程的根是两个;根据方程的根与方程的关系,再次理解代入法。

教学目标:通过实际问题了解一元二次方程的定义及一般形式;会将一个整式方程化为一元二次方程的一般形式,并能指出二次项及二次项系数、一次项及一次项系数和常数项。

教学重点:一元二次方程及有关概念的理解。

教学难点:准确的化为一元二次方程的一般式,将根代入原方程这种数学方法的理解。

教、学法建议:课前让学生完成自学内容。

(1)一元二次方程的定义关键点:整式方程、只含一个未知数、未知项最高次数为2。

(2)对一元二次方程定义的理解时,一定注意“a≠0”这一条件。

(3)用列举法探索一元二次方程的根是对一元二次方程精确求解的一种探索和补充,在教学中让学生独立尝试,强调学生的自主学习,注重合作交流,提高学生观察、分析和创新的能力。

注意点:①当a是负值时,一般转化为正数;

②增加b=0或c=0或b、c同时为0的特例;

③注意联系实际学习,避免就概念理解概念。

22.2降次---解一元二次方程

直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是降次。首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。

教学目标:理解和掌握一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。

教学重点:一元二次方程的解法。

教学难点:针对不同方程,选择合适的解法。

教、学法建议:

(1)直接开平方法:初二已学过平方根和算术平方根,学习时注意由浅入深进行。

(2)配方法:配方法在数学中成为一种很重要的数学变形,它隐含了创造条件实现化归的思想,这种思想对培养学生的数学能力影响很大。在教学中,对配方法和划归思想应充分重视,给学生提供充足的时间探索,充分的合作交流时间和空间,引导学生理解这种方法的道理,结合道理去记忆配方的具体步骤。

(3)公式法:根据配方法推导求根公式,以配方法为基础,引导学生自己探索求根公式,不可直接抛出公式让学生模仿着用。强调“当”是根据非负而产生的。教学时总结出公式法解题的一般步骤:化为一般式;指出a、b、c,带符号;写出求根公式;代入求解。在公式法之后进行归纳,总结根的判别式对应的一元二次方程根的三种情况:

①有两个不等的实数根;

②有两个相等的实数根;

①②合称为由实数根,③没有实数根,但不能说没有根。

(4)因式分解法:新课标已把这部分的内容降要求了,所以,不要再提高复杂度,只要求学生能掌握:三类。当然,有余力的可稍作变式。另外,对于二次项系数为1的简单的十字相乘法一点补充。

第一课时,安排可直接提公因式类型

第二课时,安排需要整理后方可因式分解类型,及简单的十字相乘法。

(5)一元二次方程根的判别式:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。

(6)一元二次方程根与系数关系:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。

根据中山中考命题的特点,在进行完根的判别式与根与系数的关系的简单知识的教学之后再上一节习题课,目的是让学生懂得利用知识解决较为综合的问题。

注意点:

①以解决实际问题背景为线索安排解法学习,方法步骤多由学生归纳总结。

②配方法、公式法都应先判断是否为一般形式,小心符号错误或混淆

③因式分解法没注意方程没有写成a·b=0形式,要讲解原理

④形如:,学生会约分,造成丢根。

⑤对一个方程,应先鼓励学生分析方程特点,对解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。

22.3实际问题与一元二次方程

一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

本章教学约需14课时,具体分配如下:

§22.1一元二次方程 1课时

§22.2一元二次方程的解法5课时

一元二次方程的根的判别式1课时

一元二次方程的根与系数的关系2课时

§22.3一元二次方程的应用2课时

§小结2课时

单元测验1课时

推荐方程求根心得体会和方法八

在本课教学中,我主要采用小组合作学习,讨论的方式,让学生探究新知识,效果较好。

出示例题2,小组合作学习,讨论:①你是怎样理解图意的?②你是如何列方程的?③你是根据什么解方程的?④怎样检验方程的解是否正确?然后班交流讨论,展示学生的练习。指名回答,说说自己的分析。你对他的分析有什么要问的吗?教师总结解题关键。

教学例3时,让学生观察、分析,这道题与前面的练习题比较有什么区别?这道题可以怎样解?(先小组交流后个人解答)学生找出解题关键,培养一题多解的习惯与能力。

最后让学生做全课总结:今天学习了什么知识?解方程的关键是什么?

充分练习,进行思维训练,设计有趣的习题“帮小兔找家”:4x-12=203x=15x+7=152x+3×2=16

18-2x=215÷3+4x=25

巩固知识,激发兴趣。

推荐方程求根心得体会和方法九

教学目标

知识与能力

结合操作活动进一步理解方程的意义。

过程与方法

会用含有未知数的等式表示等量关系。

情感、态度与价值观

感受方程与现实生活的密切联系,体验数学活动的探索性。

重点、难点

重点

理解方程的意义,会用含有未知数的等式表示等量关系。

难点

理解方程的意义。

教学准备

教师准备:

多媒体

学生准备:

练习本

教学过程

(一)新课导入:复习导入

1.出示:下面式子哪些是方程,并说明理由?

6+x=14 36-7=29 60+2370 8+x

x+414 ÷18=3 3x-12 5x+2x=63

2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。

设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。

(二)探究新知:

1.联系实际,应用拓展

师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)

衣:妈妈带50元钱给我买了一件t恤后,还剩下26元。

食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。

住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?

行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。

师:你想试哪一个?

生1:我想试“衣”。(生读题)

师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?

生2:x+26=50

生3:50-x=26

师:这是方程。

生4:x代表t恤的价钱。

生5:我想试“食”。 我是这样写的x+10=15,x代表的是一袋薯条的价钱。

生6:我想试试“行”。

师:你能直接口答吗?

生7:x-13+18=36,x代表的是车上原有的人数。

生7:我想说最后一个“住”。102÷3=x,x代表的是房间数。

师:习惯上都把未知数写在等号的左边。也可以这样表示3x=102

师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。

2.(出示)结合生活中的事例解释方程。

①+19=54

②x-14=36

③z-13十15=37

师:选择自己喜欢的来说。

生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。

师:真是个爱学习的好孩子。

生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。

师:要学会合理使用零花钱。

生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。

师:先下后上,文明乘车。

……

师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!

设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。

(三)巩固新知:

1.出示情境图,学生独立完成。说说列出方程的等量关系。

小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首

学生能够列出:小芳背古诗首数-5=小丽背古诗首数

或:小芳背古诗首数-小丽背古诗首数=5

即:x-5=80

或:x-80=5

学生同桌交流,说说自己的想法,然后,全班订正。

2.出示自主练习3。

这是一个结合具体情境理解方程意义的题目。

先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。

设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。

(四)达标反馈

1.下列各式那些是等式?

①45+32=77 ②5÷x=12 ③3x-4=22 ④2×21=42

⑤a+b=90 ⑥÷6

2.按要求写一写。

您可能关注的文档