质数和合数学习心得体会及收获 质数与合数的总结(七篇)

  • 上传日期:2023-01-11 06:33:35 |
  • ZTFB |
  • 13页

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。心得体会对于我们是非常有帮助的,可是应该怎么写心得体会呢?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

描写质数和合数学习心得体会及收获一

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主整理的活动,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

师出示问题(2)

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

师出示问题(3)

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。

整理完善知识结构。

师:在这一部分中我们为什么先学因数和倍数?

组织学生讨论和交流

师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

第二课时

教学目标

1、 经历自主回顾和整理整数、小数、分数四则运算的过程。

2、 能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、 体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报 本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

2、出示问题(2)

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、 估算。

(1) 出示问题(1)

先让生独立思考并判断,再回答是如何判断的。

(2) 出示问题(2)

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

师:这节课我们整理和回顾了什么内容?需要注意什么?

描写质数和合数学习心得体会及收获二

质数和合数是根据因数的个数来分类的,质数只有2个因数,合数至少有3个因数。

课本例1提供了一个方法,依次划掉某些数的`倍数,把不是质数的都排除了,剩下的就都是质数。依次划掉2、3的倍数后(2、3除外),接下来应该划掉几的倍数呢?当然不是4!上课认真听讲的同学都知道,接下来只需把5、7的倍数划掉就可以了(5、7除外)。

原理简析:由合数的意义可知,只要判断一个数除了1和它本身还有别的因数,这个数就是合数。因为因数是成对出现的,所以只要判断前一半即可。10^2=100,而10以内的质数只有2、3、5、7,所以只要划掉2、3、5、7的倍数即可(2、3、5、7除外)。

重点来了!2、5的倍数一眼就能看出,3的倍数只需计算数字和(1位数+1位数),7的倍数除去2、3、5的倍数及九九表内的数,只剩下77和91,而77又可以一眼看出是合数,所以只剩一个数——91!

简单归纳一下:100以内除了91,个位数字是1、3、7、9的,数字和不是3的倍数的都是质数。

举个例子,79

第一秒,不是九九表内数字,不是2、5的倍数,不是77、91;

第二秒,7+9=16,不是3的倍数。

第三秒,机动时间、检查时间。

1、现在小学数学课本上的意义基本等同于定义,非特殊情况都可以按照定义来理解。

2、100以内质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

描写质数和合数学习心得体会及收获三

答案:2。

最小的质数:即“2”。2是最小的质数,也是唯一的一个既是偶数又是质数的数。也就是说,除了2以外,质数都是奇数。小于100的质数有如下25个:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。

为什么是2,我们来看质数定义:质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。任一大于1的自然数,要么本身是质数,要么能够分解为几个质数之积,且这种分解是唯一的。

质数的个数是无穷的,一个偶数能够写成两个合数之和,其中每一个合数都最多仅有9个质因数;、一个偶数必定能够写成一个质数加上一个合成数,其中合数的因子个数有上界;一个充分大偶数必定能够写成一个素数加上一个最多由2个质因子所组成的合成数,简称为(1+2)。

相关的题目:最小的合数是4。合数是指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。合数的性质:所有大于2的`偶数都是合数;所有大于5的奇数中,个位为5的都是合数;除0以外,所有个位为0的自然数都是合数;所有个位为4,6,8的自然数都是合数;最小的(偶)合数为4,最小的奇合数为9;每一个合数都能够以唯一形式被写成质数的乘积,即分解质因数。

这是一个小学数学问题,经常考。最小的合数是4,最小的质数是2,1不是质数也不是合数。而质数和合数都是在非零的自然数中对数的研究的结果,非零条件这是约定,也是前提条件。

合数和质数的概念:

合数,除了有因数1和它本身还有别的因数,那么这个数就是合数,如4的因数有:1、2、4,,共三个因数,也就是4的因数除了1和4本身,还有另一个因数2,共三个因数,所以我们就说4是合数。

质数,就是仅有一和它本身两个因数,再没有别的因数,那么这样的数就是质数。如2,仅有1和2两个因数,所以2就是质数。

自然数里,从小到大的排列是0、1、2、3、4......,当研究对象排除了1和0,剩下最小的数是2,可是2仅有因数1和2,所以不是最小的适宜,而是最小的质数,继续研究3,3因为也有因数1和3,所以3也不是最小的合数,之后研究4,发现4有3个因数:1、2、4,所以我们说4是最小的合数。

其实在数学研究的过程中,质数和合数是放在一齐学习的。而规定质数和适宜的前提条件就是认识因数,并经过因数的个数确定质数和合数。

而因数又与另一个数合成一对,那就是倍数;如4=1×4,那么1和4都是4的因数,反过来4则是1和4的倍数;

小学阶段成对出现的数,还有奇数和偶数,把它们放在一齐认识才能让孩子更好的识别他们。

描写质数和合数学习心得体会及收获四

把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。

1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。

2.培养学生观察、分析、思考和抽象、概括的能力。

3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。

教学过程

1.用分数表示下面各图中的阴影部分,并比较它们的大小。

1、分别出示每一个圆,让学生说出表示阴影部分的分数。

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2、观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

(2)阴影部分的大小相等,可以用等号连接起来。

3、分析、推导出表示阴影部分的分数的大小也相等:

(1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

4、观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

(2)观察 例2.比较 的大小。

1、出示图:我们在三条同样的数轴上分别表示这三个分数。

2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。

2、为什么要零除外?

3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)

4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

(1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

板书:

教师提问:

(1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)

1、把下面各分数化成分母是60,而大小不变的分数。

2、把下面的分数化成分子是1,而大小不变的分数。

3、在( )里填上适当的数。

4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。

1、指出下面每组中的两个分数是相等的还是不相等的。

2、在下面的括号里填上适当的数。

分数的基本性质(说课稿)

理解了分数的意义,认识真分数、假分数和带分数,掌握了假分数和带分数、整数的互化方法之后,就要学习分数的基本性质。

分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。

学生在学习和掌握分数的基本性质过程中,叙述性质内容时常常把分子、分母同时乘上或者除以相同的数(零除外)中的同时零除外丢掉。出现这类问题的原因是:对分数的基本性质没有真正的理解;对零为什么要除外的道理也不太清楚。分数基本性质是建立在:分数的意义、商不变的性质的基础上学习的,由于学生进入高年级,抽象思维有了一定的基础,在培养学生探索规律、应用一些数学方法进行迁移类推、思维的严密性以及思维的灵活性等方面,都应该进一步予以加强。这种思想方法以及能力的培养,对今后研究统计知识及其学生的终身学习都具有非常重要的作用。

分数的基本性质是以分数大小相等这一概念为基础展开研究的,由于学生在中年级已经对商不变的性质有了较深入的理解,所以在教学实践中要有意识的加强分数与除法之间的联系,以便把旧知识迁移到新的知识中来。

在教学中,采用小组合作学习的办法,通过给3张纸涂色、折叠、观察、探索进行规律性的总结。在进行小组汇报时,教师揭示了知识间的联系,鼓励学生用不同的理解方法、不同角度进行汇报分数基本性质的可行性,为学生的思维留下了创造空间。在学生总结规律后,为了加深对分数的性质的理解,还可以让同学举一些符合规律的例子进行说明。教学实践中,要注重培养学生揭示知识间的联系、探索规律、总结规律的能力。

描写质数和合数学习心得体会及收获五

《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。

2.培养学生观察、比较、分析、概括等方面的能力。

3.通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。

教学重点:

理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

教学难点

学生通过猜想和动手验证,抽象概括出分数的基本性质。

教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下内容:

1.创设情境

片断一

师:我们班有男生多少人?女生呢?,你能说出我们班男生和女生的人数比吗?

生:男生和女生的人数比是:35:40。

师:你们认为这个比还可以……

生:化简单一点。

师:具体说说你的想法。

生:根据比的基本性质,把比的前项和后项同时除以5,得到7:8。

师:你怎么想到除以5的?

生:因为35和40的最大公约数是5。

师:说得很好!大家同意吗?

生:同意。

师:7:8,最简单了吗?

生1:是,因为7和8已经是互质数了。

生2:互质数就只有公约数1了,因此它是最简单的比了。

师:说得好!这里的7:8,前项和后项是互质数,你能给它取个名称吗?

生1:就叫最简单的比。

生2:我认为应该叫最简单的整数比更好。

师:为什么?

生:因为有时还可能出现小数或分数的比,也是很简单的。

师:你们大家都同意吗?那我们就把这样的比称为最简单的整数比。你能再说一个最简单的整数比吗?

生:2:3、1:2、8:9……

师:对于最简单的整数比,你们都理解了吗?

生:理解了。

师:说说你们的理解?

生1:首先前项和后项必须是互质数。

生2:那前项和后项就必须是整数。

生3:其实,它还是一个比。

师:同学们都说得很好,那12:18是最简单的整数比吗?

生:不是。

师:为什么?你是怎么想的?

生:12和18有公约数6。

师:那也就是说可以把这个比进行化简,把它化成最简单的整数比,对吗?你们想不想试一试。

…反思:以班中男女生人数为新知的切入点,通过师生互动、生生互动,理解最简整数比的含义,同时放手让学生利用新知去尝试解决把一个比化简,体现了在做中学的理念。

片断二

师:你能说说刚才的化简,用了什么知识?

生:根据比的基本性质,把比的前项和后项同时除以一个相同的数,就可以化简了。

师:要是给你一个分数或小数的比,你觉得还能再同时除以一个相同的数吗?

生:不能

师:为什么?

生:我觉得要将一个分数或小数比化简,必须同时乘一个相同的数,只有这样才能转化为整数比。

师:说得真好,还用上了转化。你们想不想试一试把一个分数比或小数比化简?谁来说一个分数比?

生::

师:再说一个小数比?

生:1.8:0.09

师:那,咱们先来试一试。

……

反思:对于分数比和小数比的化简,确实有些难度,但由于学生已经初步有了化简比的方法,因此教师可以先让学生去试一试,这样学生的学习就会更主动。

片断三

师:谁先来说说你的想法。

描写质数和合数学习心得体会及收获六

本次教研活动的主题是“重点导学、疑点导练、精讲点拨成就有效课堂”,现结合活动主题谈自己几点收获:

课前复习2、5、3的倍数特征为寻找100以内质数、判断质数和合数做足了铺垫,在引新课时,说“自然数还有新的分类标准?”一下子抓住了学生探究的心,很想一探究竟。

1既不是质数,也不是合数,教师没有让学生反复记,而是采用了质疑的方式,“在更大的自然数中,还有没有1个因数的”加深了1的特殊性,处理的细致、明了。对于易混的知识点采用了判断的方式,学生通过举反例巩固了刚学与已学的知识之间的联系,如所有的奇数都是质数、所有的偶数都是合数等等。对于本节课的重点知识质数、合数采用了对比教学,当引课时由与奇、偶数不同的分类方法引出,认识了质数、合数后,又让学生从20以内的奇、偶数中找质数、合数,在练习中又将二者密切练习,给了学生一个清晰的概念。

每一次的练习出现时都具有一定的层次,由浅入深,先是对刚学知识的运用,而后是具有争议或开拓思维的题目,学生迎接挑战的兴趣也会随着提升。

建议:

1、如果把填写精要交流和写1-12的因数放在课前完成,这样节省出的时间留给后面环节,就不会显得紧张了。

2、再找100以内质数时,小组合作效果是不是会更好?

描写质数和合数学习心得体会及收获七

100以内的质数共有25个,分别是2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

100以内的质数质数记忆方法:

二,三,五,七,一十一;

一三,一九,一十七;

二三,二九,三十七;

三一,四一,四十七;

四三,五三,五十九;

六一,七一,六十七;

七三,八三,八十九;

再加七九,九十七;

25个质数不能少;

百以内质数心中记。

2、3、5、7、11(二、三、五、七和十一)

13、17(十三后面是十七)

19、23、29(十九、二三、二十九)

31、37、41(三一、三七、四十一)

43、47、53(四三、四七、五十三)

59、61、67(五九、六一、六十七)

71、73、79(七一、七三、七十九)

83、89、97(八三、八九、九十七)

十以内的有4个:2、3、5、7

十几的有4个:11、13、17、19

二十几的有2个:23、29

三十几的有2个:31、37

四十几的有3个:41、43、47

五十几的有2个:53、59

六十几的有2个:61、67

七十几的有3个:71、73、79

八十几的有2个:83、89

九十几的有1个:97

第一类:2、5(个位是2和5的仅有这两个)

第二类:个位是1的有11、31、41、61、71(五个)

第三类;个位是3的有3、13、23、43、53、73、83(七个)

第四类;个位是7的有7、17、37、47、67、97(六个)

第五类:个位是9的有19、29、59、79、89(五个)

100以内的质数顺口溜:

一位数字偶打头,2,3,5,7要记熟;(237)

两位质数不用愁,能够编成顺口溜;

十位若是4和1,个位准有1,3,7;(414347111317)

十位若是2,5,8,个位3,9往上加;(232953598389)

十位若是3和6,个位1、7跟在后;(31376167)

十位若是被7占,个位准是1、9、3;(717973)

19、97最终算。(1997)

其他质数知识:

1、在一个大于1的数a和它的2倍之间(即区间(a,2a]中)必存在至少一个素数。、

2、存在任意长度的素数等差数列。

3、一个偶数能够写成两个合数之和,其中每一个合数都最多仅有9个质因数。(挪威数学家布朗,1920年)

4、一个偶数必定能够写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)

5、一个偶数必定能够写成一个质数加上一个最多由5个因子所组成的合成数。之后,有人简称这结果为(1+5)(中国潘承洞,1968年)

5、一个充分大偶数必定能够写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)

您可能关注的文档