高等数学补考心得体会如何写 高等数学重修心得(三篇)

  • 上传日期:2022-12-27 17:11:52 |
  • ZTFB |
  • 8页

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。优质的心得体会该怎么样去写呢?下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

描写高等数学补考心得体会如何写一

(一)《普通高中数学课程标准(实验)》

1、课程的基本理念:构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识;与时俱进地认识"双基";强调本质,注意适度形式化;体现数学的文化价值;注重信息技术与数学课程的整合;建立合理、科学的评价体系。

2、课程目标:

(1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

(2)提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

(3)提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

(4)发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

(5)提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

(6)具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维

习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(二)20__年普通高等学校招生全国统一考试数学(文科)

1、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

(1)空间想象能力:

(2)抽象根据能力:

(3)推理论证能力:

(4)运算求解能力:

(5)数据处理能力:

(6)应用意识:

(7)创新意识。

2、个性品质要求

个性品质是指考生个体的情感、态度和价值观,要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

3、难度比例

试题按其难度分为容易题、中等题、难题,试卷包括容易题、中等题和难题,以中等题为主,试卷的难度系数在0.55左右。

二、教学工作目标

(一)隐性目标

1、努力实现《普通高中数学课程标准(实验)》中对课程目标中的六点说明;

2、发展学生的能力:

(1)空间想象能力:

(2)抽象根据能力:

(3)推理论证能力:

(4)运算求解能力:

(5)数据处理能力:

(6)应用意识:

(7)创新意识。

3、培养学生的个性品质:如具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。能克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

(二)显性目标

力求使每位学生都获得必要的数学基础知识和基本技能,理解基本的数学概念,数学成绩有所提高,对数学更加感兴趣。结合我所教的两个班的实际,我希望高二14班的数学成绩能在期中、期末中的平均分排在全级前4名,高二15班的数学成绩有所进步,能在期中、期末平均分的排名中排在全级前8名。

三、学生基本情况分析

两个班均属普通班,学生基础不好,接受能力差,甚至出现厌学情绪,特别是15班的好几位学生,基本不学数学。所以上课难度有点大。

四、具体措施

为了达到上述教学目的,我将采取以下举措:

(一)向学生介绍学习数学的方法,使同学们养成良好的学习习惯。

1、提高听课的效率是关键。

学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:

(1)课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

(2)听课过程中的科学。首先应做好课前的物质准备和精神准备;其次就是听课要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

(3)特别注意老师讲课的开头和结尾。

(4)积极思考每一道例题,记录下与老师不同的思路,要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

(5)此外还要特别注意老师讲课中的提示。

(6)最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

2、做好复习和总结工作。

(1)做好及时的复习。

(2)做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

(3)做好单元小结。单元小结内容应包括以下部分:本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因。

(二)改进教学方法及需要注意的问题

(1)转变观念,提高对素质教育的认识。在使用新教科书时一定要改进教学方法,按《新大纲》的要求进行,控制教学要求,控制教学难度,确实从"应试教育"转变到贯彻素质教育的轨道上来。要应试,但必须从提高学生数学能力上下工夫.

(2)要充分利用先进的教学手段,提高教学效益。新的教学手段必然促进教学方法的改革,必然带来新的教学效益。科学计算器已被列入初中的教学内容,高中相应的计算内容已充分使用科学计算器讲授。

描写高等数学补考心得体会如何写二

一、指导思想:

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

二、基本情况分析:

1、4班共 人,男生 人,女生 人;本班相对而言,数学尖子约 人,中上等生约 人,中等生约 人,中下生约 人,差生约 人。

5班共 人,男生 人,女生 人;本班相对而言,数学尖子约 人,中上等生约 人,中等生约 人,中下生约 人,差生约 人。

2、4班在初中升入高中的升学考试中,数学成绩在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有人,其中最高分为 ,最低分为 。

5班在初中升入高中的升学考试中,数学成绩在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有人,其中最高分为 ,最低分为 。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

三、教材分析:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

四、教学要求:

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。

4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。

5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。

6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。

7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

六、教学进度安排:

九月份: 集合(2)、子集、全集、补集(2)、交集、并集(2)、集合习题(1)

绝对值不等式(1)、一元二次不等式(2)、不等式习题(1)

逻辑联结词(1)、四种命题(1)、充要条件(1)、习题(1)、

第一章小结与练习(3)

十月份: 映射(1)、函数(2)、单调性奇偶性(3)、反函数(2)、习题(1)

指数(1)、指数函数(3)、对数(2)、对数函数(3)、习题(1)

函数应用举例(2)、第二章小结与练习(3)

十一月份:期中复习与考试(8)、数列(2)、

等差数列(2)、等差数列的前n项和(2)、习题(1)

等比数列(2)、等比数列的前n项和(2)、

十二月份:分期付款等应用(2)、习题(1)

第三章小结与练习(3)、复习(12)

元月份: 期末复习(8)

附:高一数学教学的几点具体措施

1、作业方面:

①课堂作业设置一本;提倡用钢笔书写,一律要求用铅笔、尺规作图,书写规范;墨迹、错误用橡皮擦擦干净,保持作业本整洁;当天布置,当天第二节晚自习之前交(若无晚自习,则第二天早读之前交);批阅用“?”号代表错误,一般点在错误开始处,自觉完成更正;

②每次作业按a、b、c、d四个等级评定,分别得分5、4、3、2,每本作业本完成后自行统计得分并上交科代表审核、教师评定等级,得分90%~98%为优良等级,98%及以上为优秀等级;

③《同步优化设计》及时完成,按进度交阅,自觉订正。

2、考试方面:

①控制考试次数,一般为:月考2次,期中期末统考各1次,期末复习小考2次;

②制好试卷,切合实际,难易适中,目标高考;

③组织好考试,严格考试纪律。

3、兴趣方面:

①组织一次活动、一次竞赛;

②多上一些多媒体课、优质课;

③每两周安排一节课时,由课代表组织4个学生讲课,每人10分钟左右,主要讲解《同步优化设计》上的难题。

4、成绩总评:

①每期总评成绩150分,分为三大项,分值为:考试成绩125分(2次月考各5’、期中15’、期末100’)、平时成绩24分(作业10’、练习8’、2次小考各3’)、自评1分。

②提倡准备笔记本、考试错题更正本,并检查后给予加分5’、2’,其它特别表现给予加分3’。

5、抓好学习常规,提高学习成绩。

描写高等数学补考心得体会如何写三

选修2-2

1.导数及其应用(约24课时)

(1)导数概念及其几何意义

① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

① 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x, y=x 的导数。

② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数。

③ 会使用导数公式表。

(3)导数在研究函数中的应用

① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

(5)定积分与微积分基本定理

① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中数学文化的要求。(参见第91页)

2.推理与证明(约8课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用(参见选修2-2中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。

小编精心推荐:数学教师工作计划 | 数学教学计划

您可能关注的文档