中国数学起源心得体会报告 中国数学起源与发展(8篇)

  • 上传日期:2022-12-26 20:23:05 |
  • ZTFB |
  • 13页

我们在一些事情上受到启发后,应该马上记录下来,写一篇心得体会,这样我们可以养成良好的总结方法。那么心得体会该怎么写?想必这让大家都很苦恼吧。以下是小编帮大家整理的心得体会范文,欢迎大家借鉴与参考,希望对大家有所帮助。

主题中国数学起源心得体会报告一

一、多样化与优化

现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切。要创造促进每个学生得到长足发展的数学教育。

算法多样化是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏止了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。

应该明确“算法多样化”与“一题多解”是有区别的。“一题多解”是面向个体,尤其是中等以上水平的学生,遇到同一道题可有多种思路多种解法,目的是为了发展学生思维的灵活性。而“多样化”是面向群体的,每人可以用自己最喜欢或最能理解的一种算法,同时在群体多样化时,通过交流、评价可以吸取或改变自己原有的算法。因此,在教学中不应该也不能要求学生对同一题说出几种算法,否则只是增加学生不必要的负担。

曾经看到一些低年级的计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学困生确是眼花缭乱、无所适从,产生了干扰。这种情况是不是我们鼓励的个性化呢?我认为不然。数学是讲“优化”的,算法“优化”的含意是要求寻找最简捷、最容易、速度快的方法。诚然,在多种算法中,有的并不见得有优劣之分,如20以内退位减法,无论是用“破十”“连减”或“用加算减”的方法,都很难说孰优孰劣,儿童完全可随自己的经验进行选择;又如长方形周长的求法,有的愿意用“(长+宽)×2”的方法,有的则用“长×2+宽×2”的方法,学生喜欢用哪个就用哪个。

但是,一般情况下,总有个最基本、最一般或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般的算法,以便举一反三、闻一知百,否则就失去了教育的功能。请看一位教师教两位数乘两位数的新课实录。由实例引出24×12=?第一步,先由学生各自探索算法,分组交流(有10种左右),经过归纳不外乎以下三类:连加,连乘24×3×4,24×2×6,……),乘法分配律的应用(24×10+24×2,……)。第二步,由学生评价,一致认为三类算法都合理,但第一类太麻烦,其他两类各有优势。第三步,教师将题目改为24×13,请学生用自己喜欢的算法计算,结果都选择为24×10+24×3,此乃笔算乘法的算理。此时,教师便因势利导引入了乘法竖式,并使学生体会到它的优越性──能将乘法算理以固定而简明的程式显示,操作性强,简捷而不易出错,并具有一般性。我认为这种教学是正确的,又促进了儿童的发展,才是真正凸现了“算法多样化”的实质。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。

二、生活化与数学化

数学源于生活,寓于生活,用于生活。新课程改革重视数学教学生活化,引导学生在活动中学习数学,使孩子们感到数学有趣、有用,取得了明显的效果,也是数学课改的最大亮点。

数学,对儿童来说,是他们自己生活经验中对数学现象的一种“解读”。把数学教学密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。教学中,有的通过调查商品标价引入小数乘法,调查父母月工资的收入计算多位数加减,测量足球场的面积并以其为参照物,体验1公顷的实际大小;有的结合新课内容介绍数学知识在实际中的应用;有的复习课也已不只停留在“查缺补漏,知识系统化”上,开始着力于培养学生综合运用知识解决实际问题的能力。记得我曾见到的一节六年级“代数初步知识”复习课,教师把自身赴山东讲课事例作为背景,边说边画:

向学生设问:①你们能用字母表示的式子写出老师淄博一行的全部开支吗?

②想一想,式子中哪些量是不变的?哪些量是可变的?

③算一算,老师这次淄博一行至少要带多少钱较为合适?(小组合作讨论)

整个教学培养了学生利用已学知识综合解决实际问题的能力,并使大家体尝到数学应用的价值。

但是,在课改实践中,我也听到不少教师有这样的疑惑:“数学问题是不是都必须从儿童的生活实际提出?”“教三角形内角和怎样从生活实际引入?”“循环小数又怎样联系学生的生活实际?”……正由于此,有的课已上了15分钟,还停留在大量的情境渲染之中,丝毫没有涉及数学本身的内容,犹如皮厚的“沙田柚”剥不开也吃不着,教学效果可想而知。

应该看到,儿童的数学学习是一种不断提出问题、探索问题和解决问题的思维过程。问题是数学的心脏,数学问题来自两个方面,有来自数学外部的(即现实的生活实际),也有来自数学内部的。无论来自外部或内部,只要能造成学生的认知矛盾,都能引起学生的内在学习动机,就会出现发展,都是有价值的。前面提到的“三角形内角和”,如果采用由旧引新的方法(设问:正方形有几个内角?四个内角和是多少度?长方形呢?三角形三个内角的大小是不固定的,有没有规律呢?)三言两语,就能有效地激起学生的求知欲。因此,看问题必须全面,不能绝对化。教学是科学,一切要从实际出发。

当前,数学教学注重应用,既讲来源,又谈用处,大大地克服了过去“掐头去尾烧中段”脱离实际的倾向,成效是明显的。但必须认清,我们反对的是只“烧中段”,而不是不要“烧中段”,我们反对的是过度的形式化,而不是不要形式化,数学的形式化是数学固有的特点。我们既要注重应用、返璞归真的一面,又要注重抽象概括、形式推理的一面,引导学生抽象出数学问题,提炼出数学模型,利用其已有的知识经验,通过数学思考解决问题。所以,重要的数学概念、规律应加以概括,常见的数量关系(如速度、时间、路程等)在学生理解的基础上仍要揭示,在重视直觉思维的同时,还要注重培养形象思维和初步的逻辑思维,以提高学生的数学素养。

课堂内的数学活动是丰富多彩的。什么是数学活动呢?我认为,具有数学意义的活动才能称得上数学活动。目前,有的数学活动,有情境没有活动,有活动没有数学味,有活动缺乏体验。下面介绍一位教师在教学“11~20以内数的认识”时组织的颇有意义的数学活动。当学生已学会数数(顺着数、倒着数、2个2个地数……)后,组织了一个别开生面的游戏。教师拿出一个黑白相间的足球:“数一数,有几块是白的?有几块是黑的?看谁数得又对又快!”话音刚落,不少学生争先恐后地要求上来。前来的多个学生,每人数的结果都不一样,不是重就是漏,怎么办?正当全班困惑之际,一位小同学自告奋勇地上来,拿起红粉笔在白的上面逐一点数,又拿出白粉笔在黑的上面依次点数,不重也不漏,数得完全正确。这样的游戏活动,不仅激发了学生的兴趣,而且渗透了一一对应的数学思想方法,这才是有价值的有意义的数学活动。

三、探索与发现

学习方式一般说来,可分为接受学习与发现学习两种。

发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家j.s布鲁纳提倡的,并流传欧美,这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大特点是会发现问题。他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。20世纪70年代传入中国时,我国教育家将“发现法”引申为“引导发现法”,主张在必要时教师可以适当给学生一点“引导”,与布鲁纳的“纯发现法”有些区别。教学实践折射出这样一个道理,外国的先进经验或理论的引入,必须本土化才能发挥其积极作用。我国目前强调的“自主探索”与“发现学习”亦基本相同。

美国另一位著名的教育心理学家d.p.奥苏伯尔针对20世纪60年代许多人以为讲授必然会导致机械学习,而发现学习才是有意义的学习的片面看法,在创造性地吸取了j.p.皮亚杰和布鲁纳等人的认知观点后,首先对学习进行了两个维度的不同分类。根据学习的深度分为有意义学习与机械学习,根据学习的方式分为发现学习与接受学习。两种分类相互独立,成为正交(见下图)。

有意义学习↑有意义的接受学习;有意义的发现学习;机械学习;│机械的接受学习;机械的发现学习;接受学习;发现学习

他不像布鲁纳那样只强调发现学习,认为学习可以分为有意义的发现学习和有意义的接受学习,而后者是学生的主要学习方式。奥苏伯尔的见解对我们研究小学生的数学学习是有启发的。

小学生学习数学,首先要掌握前人积累的数学基础知识(往往以符号形式表示),学生必须积极思考,理解每个符号、式子所代表的实际意义,才能真正内化成自己的认识。如果学习中仅仅记住这些符号的代表组合,例如,只知道读作“三分之二”,却不明其意,这就是机械学习。一般的数学学习都是有意义的学习,当然不排斥个别的机械学习,如背乘法口诀,这种熟记只有助于记忆,并不表明推导其结果的过程,而且机械学习也只是辅助性的学习。

数学学习中的有意义的接受学习是指学习内容已以定论形式展示出来,不需要学生去独立发现,只要学生从自己原有的认知结构中检索与新知识具有实质性联系的固定点,使之相互作用,实行新知识意义上的同化,从而扩大或改组认知结构。例如,“四则混合运算顺序”本身就是一种规定,学生在原有已掌握的加、减、乘、除法计算方法的基础上,“先乘除后加减”直接计算,便可接受这一知识。

目前我国提倡的探索学习则不同。这种学习方式不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考去探索发现某些数量关系和图形特征。例如,学习了平行四边形面积求法时,学生用各种不同的平行四边形纸片,通过剪拼、割补转化成一个长方形,然后分析割补后的长方形的长和宽与原来平行四边形的底和高的关系,从而探索出平行四边形的面积公式为“底×高”。

就以上两种学习方式的功能比较而言:探索学习比较开放,它更重视学生的学习动机,更强调学习过程,有利于学生直觉思维和创新潜能的培养和发挥,但是费时较多,何况数学学习,不必要也不可能由学生处处去亲自发现和独立探索。有意义的接受学习可以在较短的时期内使学生吸取更多的信息,但是必须具备两个条件,一是学习课题对原认知结构具有潜在的意义(即有实质性的非人为的联系),二是学生具有积极学习的心向。如果两个条件俱全,同样可以激发学习的主动性,学习也是有效的;如果缺少其中一个条件,就容易造成死记硬背。

由此可见,两种主要学习方式都很重要,各有利弊,各司其职,不可偏废。而且有时在同一节课内,两种方式兼而有之、相互补充、相互配合。例如,笔者曾在北师大实验小学随堂看到“倒数”一节数学课:课一开始,教师利用汉字结构上下颠倒位置可以组成另一个汉字的譬喻(杏→呆,吴→吞……),使学生联想到数也可以颠倒,于是引入“倒数”并板书课题。此时,学生接二连三地提出各种困惑:“究竟什么叫倒数?”“学倒数有什么用?”“找倒数有没有窍门?”……(足以说明学生已具有学习新课题的迫切心向),教师立即让学生自学课本,研究结语“乘积为1的两个数就是互为倒数”,全班学生都表示“懂了”(因为结论中有关概念是学生所熟知的),这种学习方式便是典型的有意义接受学习。学生是否真“懂了”?教师要求学生自举例子加以说明,大家十分踊跃,有的说出真分数、假分数,还有举出小数、整数,到最后讨论了1和0有没有倒数,所举例子涉及各种典型情况,有交流、有争辩,并探索了求倒数的方法,这又是一种自主探索、合作交流的学习方式。40分钟的课堂教学,两种学习方式相互补充,交叉进行,朴实无华,有效地完成了学习任务。像这样的教例在日常教学中也不少见。

笔者认为,新一轮课改中反复强调的“动手实践、自主探索、合作交流是学生学习数学的重要方式”,要“改变学习方式”等,主要是针对过去过分沉湎于接受学习而影响学生创新精神的情况而提出的,绝不意味着反对接受学习。教学中,教师应全面而综合地从教学内容、要求、对象等各因素进行考虑,引导学生采用恰当的学习方式进行学习,以确保学习的有效性。那种提倡一种又去否定另一种学习方式“非此即彼”的绝对化做法和说法,不仅不符合教学实践,而且对课改的深入发展是有害无益的。

自主探索是教师引导下的自主探索,要处理好自主和引导、放和收、过程和结果之间的辩证关系。面对挑战性的问题,估计学生通过努力能够探索求得的,就应大胆放开,放要放得真心、实在,收要收得及时、自然。应该看到,只放不收只是表面上的热热闹闹,收效极微,失去了教师有价值的引导,剩下的主体性往往也是苍白无力的。

四、成功与挫折

成功是学生在主动参与学习过程中的一种积极的情感体验。它是促使人们永远乐观向上的动力。事实上,人人都渴望着成功,争取着成功。苏霍姆林斯基曾经说过:“把学习上取得成功的欢乐带给儿童,在儿童心里激起自豪和自尊,这是教育的第一信条。”可以这样说,获得成功是每一个学生的权利,帮助每一个学生成功是每一个教师应尽的职责。

新一轮课改中,广大教师都很注重创设各类问题情境,为学生提供成功的契机,从而增强他们的学习兴趣和成就感,现已取得了一定的成果。笔者认为在提倡获得成功的同时,也要让学生经受一些挫折与失败。成功与挫折都有两面性,学习是艰苦的劳动,探索、实验、尝试的道路不是笔直的,必然会经受挫折或失败。成功只有在失败的折射下才显得更加耀眼,在挫折的磨炼下才更有价值。

课改中,教师都很重视对学生的尊重、信任、赏识和肯定,这很有必要;但也的确看到这方面存在误区。有的不管学生表现如何一律给予夸奖,即使是一个十分简单的回答都表扬为“真了不起!真聪明……”,在一节课中还出现了多次以学生命名的“××法”,这种廉价的表扬不能起到真正激励的作用,相反会助长学生浮躁的学风。有的还误认为当前不能批评学生,批评就是否定,就会刺激学生,影响其上进心,对课上的一些不良行为视而不见,名曰“保护学生的积极性”。以上种种,会给学生的全面成长带来不可忽视的消极影响。应该指出,表扬与批评都是对儿童行为的一种强化手段,恰如其分、实事求是的强化,并得到学生群体(包括学生本人)的认同,对于学生行为的规范、学习态度的转变和学习习惯的养成都是必不可少的。

一个好的教师,从不吝啬表扬,且表扬有度,夸奖有理,从不随意批评,且批评有方,疏而不堵。这一切都出自于对学生真挚的爱。曾经有一位教师在教学20以内加法时,出示8+4=?,一个学生答“13”,引起全班哄堂大笑,此时教师用严肃的目光看了一下大家,又用和气的口吻对这个学生说:“不错嘛,离正确答案只差一点点!”并安慰他坐下来再想一想。这个学生虽然失败,但没有因失败而感到沮丧,又抬起头来认真听讲,继续发言。教师以无声的语言──目光暗示有效地遏止了班上“讥笑”的不良行为,又用心灵的关怀让学困生体面地坐下来,激励他的学习自信心,这正是在新课程教学中教师的正确行为。

以上所谈的若干问题是笔者在课改过程中所见所闻的一些现象,提出来供同行们共同讨论。

主题中国数学起源心得体会报告二

两年多来,我国义务教育数学课程改革呈现了可喜的变化。学生的知识面广了,学得活了,学习兴趣浓了,课堂开放了,教师与学生的亲和力增加了。在看到这些变化的同时,又要冷静下来对目前实施过程中的一些困惑问题进行反思。“摸着石头过河”,究竟摸到哪些石头?摸得怎样?有哪些问题有待进一步研究解决?下面对几个问题谈谈自己的看法。

一、多样化与优化

现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切。要创造促进每个学生得到长足发展的数学教育。

算法多样化是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏止了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。

应该明确“算法多样化”与“一题多解”是有区别的。“一题多解”是面向个体,尤其是中等以上水平的学生,遇到同一道题可有多种思路多种解法,目的是为了发展学生思维的灵活性。而“多样化”是面向群体的,每人可以用自己最喜欢或最能理解的一种算法,同时在群体多样化时,通过交流、评价可以吸取或改变自己原有的算法。因此,在教学中不应该也不能要求学生对同一题说出几种算法,否则只是增加学生不必要的负担。

曾经看到一些低年级的计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学困生确是眼花缭乱、无所适从,产生了干扰。这种情况是不是我们鼓励的个性化呢?我认为不然。数学是讲“优化”的,算法“优化”的含意是要求寻找最简捷、最容易、速度快的方法。诚然,在多种算法中,有的并不见得有优劣之分,如20以内退位减法,无论是用“破十”“连减”或“用加算减”的方法,都很难说孰优孰劣,儿童完全可随自己的经验进行选择;又如长方形周长的求法,有的愿意用“(长+宽)__2”的方法,有的则用“长__2+宽__2”的方法,学生喜欢用哪个就用哪个。

但是,一般情况下,总有个最基本、最一般或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般的算法,以便举一反三、闻一知百,否则就失去了教育的功能。请看一位教师教两位数乘两位数的新课实录。由实例引出24__12=?第一步,先由学生各自探索算法,分组交流(有10种左右),经过归纳不外乎以下三类:连加,连乘24__3__4,24__2__6,……),乘法分配律的应用(24__10+24__2,……)。第二步,由学生评价,一致认为三类算法都合理,但第一类太麻烦,其他两类各有优势。第三步,教师将题目改为24__13,请学生用自己喜欢的算法计算,结果都选择为24__10+24__3,此乃笔算乘法的算理。此时,教师便因势利导引入了乘法竖式,并使学生体会到它的优越性──能将乘法算理以固定而简明的程式显示,操作性强,简捷而不易出错,并具有一般性。我认为这种教学是正确的,又促进了儿童的发展,才是真正凸现了“算法多样化”的实质。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。

二、生活化与数学化

数学源于生活,寓于生活,用于生活。新课程改革重视数学教学生活化,引导学生在活动中学习数学,使孩子们感到数学有趣、有用,取得了明显的效果,也是数学课改的最大亮点。

数学,对儿童来说,是他们自己生活经验中对数学现象的一种“解读”。把数学教学密切联系他们的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,学起来必然亲切、实在、有趣、易懂。教学中,有的通过调查商品标价引入小数乘法,调查父母月工资的收入计算多位数加减,测量足球场的面积并以其为参照物,体验1公顷的实际大小;有的结合新课内容介绍数学知识在实际中的应用;有的复习课也已不只停留在“查缺补漏,知识系统化”上,开始着力于培养学生综合运用知识解决实际问题的能力。记得我曾见到的一节六年级“代数初步知识”复习课,教师把自身赴山东讲课事例作为背景,边说边画:

向学生设问:①你们能用字母表示的式子写出老师淄博一行的全部开支吗?

②想一想,式子中哪些量是不变的?哪些量是可变的?

③算一算,老师这次淄博一行至少要带多少钱较为合适?(小组合作讨论)

整个教学培养了学生利用已学知识综合解决实际问题的能力,并使大家体尝到数学应用的价值。

但是,在课改实践中,我也听到不少教师有这样的疑惑:“数学问题是不是都必须从儿童的生活实际提出?”“教三角形内角和怎样从生活实际引入?”“循环小数又怎样联系学生的生活实际?”……正由于此,有的课已上了15分钟,还停留在大量的情境渲染之中,丝毫没有涉及数学本身的内容,犹如皮厚的“沙田柚”剥不开也吃不着,教学效果可想而知。

应该看到,儿童的数学学习是一种不断提出问题、探索问题和解决问题的思维过程。问题是数学的心脏,数学问题来自两个方面,有来自数学外部的(即现实的生活实际),也有来自数学内部的。无论来自外部或内部,只要能造成学生的认知矛盾,都能引起学生的内在学习动机,就会出现发展,都是有价值的。前面提到的“三角形内角和”,如果采用由旧引新的方法(设问:正方形有几个内角?四个内角和是多少度?长方形呢?三角形三个内角的大小是不固定的,有没有规律呢?)三言两语,就能有效地激起学生的求知欲。因此,看问题必须全面,不能绝对化。教学是科学,一切要从实际出发。

当前,数学教学注重应用,既讲来源,又谈用处,大大地克服了过去“掐头去尾烧中段”脱离实际的倾向,成效是明显的。但必须认清,我们反对的是只“烧中段”,而不是不要“烧中段”,我们反对的是过度的形式化,而不是不要形式化,数学的形式化是数学固有的特点。我们既要注重应用、返璞归真的一面,又要注重抽象概括、形式推理的一面,引导学生抽象出数学问题,提炼出数学模型,利用其已有的知识经验,通过数学思考解决问题。所以,重要的数学概念、规律应加以概括,常见的数量关系(如速度、时间、路程等)在学生理解的基础上仍要揭示,在重视直觉思维的同时,还要注重培养形象思维和初步的逻辑思维,以提高学生的数学素养。

课堂内的数学活动是丰富多彩的。什么是数学活动呢?我认为,具有数学意义的活动才能称得上数学活动。目前,有的数学活动,有情境没有活动,有活动没有数学味,有活动缺乏体验。下面介绍一位教师在教学“11~20以内数的认识”时组织的颇有意义的数学活动。当学生已学会数数(顺着数、倒着数、2个2个地数……)后,组织了一个别开生面的游戏。教师拿出一个黑白相间的足球:“数一数,有几块是白的?有几块是黑的?看谁数得又对又快!”话音刚落,不少学生争先恐后地要求上来。前来的多个学生,每人数的结果都不一样,不是重就是漏,怎么办?正当全班困惑之际,一位小同学自告奋勇地上来,拿起红粉笔在白的上面逐一点数,又拿出白粉笔在黑的上面依次点数,不重也不漏,数得完全正确。这样的游戏活动,不仅激发了学生的兴趣,而且渗透了一一对应的数学思想方法,这才是有价值的有意义的数学活动。

三、探索与发现

学习方式一般说来,可分为接受学习与发现学习两种。

发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家j.s布鲁纳提倡的,并流传欧美,这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大特点是会发现问题。他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。20世纪70年代传入中国时,我国教育家将“发现法”引申为“引导发现法”,主张在必要时教师可以适当给学生一点“引导”,与布鲁纳的“纯发现法”有些区别。教学实践折射出这样一个道理,外国的先进经验或理论的引入,必须本土化才能发挥其积极作用。我国目前强调的“自主探索”与“发现学习”亦基本相同。

美国另一位著名的教育心理学家d.p.奥苏伯尔针对20世纪60年代许多人以为讲授必然会导致机械学习,而发现学习才是有意义的学习的片面看法,在创造性地吸取了j.p.皮亚杰和布鲁纳等人的认知观点后,首先对学习进行了两个维度的不同分类。根据学习的深度分为有意义学习与机械学习,根据学习的方式分为发现学习与接受学习。两种分类相互独立,成为正交(见下图)。

有意义学习↑有意义的接受学习;有意义的发现学习;机械学习;│机械的接受学习;机械的发现学习;接受学习;发现学习

他不像布鲁纳那样只强调发现学习,认为学习可以分为有意义的发现学习和有意义的接受学习,而后者是学生的主要学习方式。奥苏伯尔的见解对我们研究小学生的数学学习是有启发的。

小学生学习数学,首先要掌握前人积累的数学基础知识(往往以符号形式表示),学生必须积极思考,理解每个符号、式子所代表的实际意义,才能真正内化成自己的认识。如果学习中仅仅记住这些符号的代表组合,例如,只知道读作“三分之二”,却不明其意,这就是机械学习。一般的数学学习都是有意义的学习,当然不排斥个别的机械学习,如背乘法口诀,这种熟记只有助于记忆,并不表明推导其结果的过程,而且机械学习也只是辅助性的学习。

数学学习中的有意义的接受学习是指学习内容已以定论形式展示出来,不需要学生去独立发现,只要学生从自己原有的认知结构中检索与新知识具有实质性联系的固定点,使之相互作用,实行新知识意义上的同化,从而扩大或改组认知结构。例如,“四则混合运算顺序”本身就是一种规定,学生在原有已掌握的加、减、乘、除法计算方法的基础上,“先乘除后加减”直接计算,便可接受这一知识。

目前我国提倡的探索学习则不同。这种学习方式不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考去探索发现某些数量关系和图形特征。例如,学平行四边形面积求法时,学生用各种不同的平行四边形纸片,通过剪拼、割补转化成一个长方形,然后分析割补后的长方形的长和宽与原来平行四边形的底和高的关系,从而探索出平行四边形的面积公式为“底__高”。

就以上两种学习方式的功能比较而言:探索学习比较开放,它更重视学生的学习动机,更强调学习过程,有利于学生直觉思维和创新潜能的培养和发挥,但是费时较多,何况数学学习,不必要也不可能由学生处处去亲自发现和独立探索。有意义的接受学习可以在较短的时期内使学生吸取更多的信息,但是必须具备两个条件,一是学习课题对原认知结构具有潜在的意义(即有实质性的非人为的联系),二是学生具有积极学习的心向。如果两个条件俱全,同样可以激发学习的主动性,学习也是有效的;如果缺少其中一个条件,就容易造成死记硬背。

由此可见,两种主要学习方式都很重要,各有利弊,各司其职,不可偏废。而且有时在同一节课内,两种方式兼而有之、相互补充、相互配合。例如,笔者曾在北师大实验小学随堂看到“倒数”一节数学课:课一开始,教师利用汉字结构上下颠倒位置可以组成另一个汉字的譬喻(杏→呆,吴→吞……),使学生联想到数也可以颠倒,于是引入“倒数”并板书课题。此时,学生接二连三地提出各种困惑:“究竟什么叫倒数?”“学倒数有什么用?”“找倒数有没有窍门?”……(足以说明学生已具有学习新课题的迫切心向),教师立即让学生自学课本,研究结语“乘积为1的两个数就是互为倒数”,全班学生都表示“懂了”(因为结论中有关概念是学生所熟知的),这种学习方式便是典型的有意义接受学习。学生是否真“懂了”?教师要求学生自举例子加以说明,大家十分踊跃,有的说出真分数、假分数,还有举出小数、整数,到最后讨论了1和0有没有倒数,所举例子涉及各种典型情况,有交流、有争辩,并探索了求倒数的方法,这又是一种自主探索、合作交流的学习方式。40分钟的课堂教学,两种学习方式相互补充,交叉进行,朴实无华,有效地完成了学习任务。像这样的教例在日常教学中也不少见。

笔者认为,新一轮课改中反复强调的“动手实践、自主探索、合作交流是学生学习数学的重要方式”,要“改变学习方式”等,主要是针对过去过分沉湎于接受学习而影响学生创新精神的情况而提出的,绝不意味着反对接受学习。教学中,教师应全面而综合地从教学内容、要求、对象等各因素进行考虑,引导学生采用恰当的学习方式进行学习,以确保学习的有效性。那种提倡一种又去否定另一种学习方式“非此即彼”的绝对化做法和说法,不仅不符合教学实践,而且对课改的深入发展是有害无益的。

自主探索是教师引导下的自主探索,要处理好自主和引导、放和收、过程和结果之间的辩证关系。面对挑战性的问题,估计学生通过努力能够探索求得的,就应大胆放开,放要放得真心、实在,收要收得及时、自然。应该看到,只放不收只是表面上的热热闹闹,收效极微,失去了教师有价值的引导,剩下的主体性往往也是苍白无力的。

四、成功与挫折

成功是学生在主动参与学习过程中的一种积极的情感体验。它是促使人们永远乐观向上的动力。事实上,人人都渴望着成功,争取着成功。苏霍姆林斯基曾经说过:“把学习上取得成功的欢乐带给儿童,在儿童心里激起自豪和自尊,这是教育的第一信条。”可以这样说,获得成功是每一个学生的权利,帮助每一个学生成功是每一个教师应尽的职责。

新一轮课改中,广大教师都很注重创设各类问题情境,为学生提供成功的契机,从而增强他们的学习兴趣和成就感,现已取得了一定的成果。笔者认为在提倡获得成功的同时,也要让学生经受一些挫折与失败。成功与挫折都有两面性,学习是艰苦的劳动,探索、实验、尝试的道路不是笔直的,必然会经受挫折或失败。成功只有在失败的折射下才显得更加耀眼,在挫折的磨炼下才更有价值。

课改中,教师都很重视对学生的尊重、信任、赏识和肯定,这很有必要;但也的确看到这方面存在误区。有的不管学生表现如何一律给予夸奖,即使是一个十分简单的回答都表扬为“真了不起!真聪明……”,在一节课中还出现了多次以学生命名的“____法”,这种廉价的表扬不能起到真正激励的作用,相反会助长学生浮躁的学风。有的还误认为当前不能批评学生,批评就是否定,就会刺激学生,影响其上进心,对课上的一些不良行为视而不见,名曰“保护学生的积极性”。以上种.种,会给学生的全面成长带来不可忽视的消极影响。应该指出,表扬与批评都是对儿童行为的一种强化手段,恰如其分、实事求是的强化,并得到学生群体(包括学生本人)的认同,对于学生行为的规范、学习态度的转变和学习习惯的养成都是必不可少的。

一个好的教师,从不吝啬表扬,且表扬有度,夸奖有理,从不随意批评,且批评有方,疏而不堵。这一切都出自于对学生真挚的爱。曾经有一位教师在教学20以内加法时,出示8+4=?,一个学生答“13”,引起全班哄堂大笑,此时教师用严肃的目光看了一下大家,又用和气的口吻对这个学生说:“不错嘛,离正确答案只差一点点!”并安慰他坐下来再想一想。这个学生虽然失败,但没有因失败而感到沮丧,又抬起头来认真听讲,继续发言。教师以无声的语言──目光暗示有效地遏止了班上“讥笑”的不良行为,又用心灵的关怀让学困生体面地坐下来,激励他的学习自信心,这正是在新课程教学中教师的正确行为。

以上所谈的若干问题是笔者在课改过程中所见所闻的一些现象,提出来供同行们共同讨论。

主题中国数学起源心得体会报告三

一、内容和内容解析

1.内容

正数和负数的意义.

2.内容解析

引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要.本课内容是本章后续的有理数的相关概念及运算的基础.

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负.

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量.

二、目标和目标解析

1.教学目标

(1)体会引入负数的必要性;

(2)了解负数的意义,会用正数、负数表示具有相反意义的量.

2.目标解析

(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;

(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义.在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量.

三、教学问题诊断分析

学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限.在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难.这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致.突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量.

本节课的教学难点为:用正数、负数表示指定方向变化的量.

四、教学过程设计

1.创设情境,引入新知

教师展示教科书图1.1-1,并提出

问题1 哪位同学知道这些图片介绍的是什么内容?

学生回答.教师补充说明数的产生产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性.

【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.

问题2 请同学们阅读本章的引言.你能尝试着回答一下其中的问题吗?

学生思考并尝试解释.对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.

【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答.让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲.

2.观察感知,理解概念

问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?

学生回答,给出正确答案后,教师给出正数、负数的描述性定义:

大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数.

问题4 阅读课本第2页倒数第二段.你能举例说明什么叫一个数的符号吗?

学生阅读,举例.只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话.

教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”.0既不是正数,也不是负数.

【设计意图】让学生阅读课文,以培养他们的读书习惯.通过学生举例,可以检验他们对这段课文的理解情况.因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了.

3.例题示范,学会应用

例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率.

提问:你是怎么理解例(1)的?

如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?

师生合作回答上述问题.估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的.体重增长值为负数,相当于体重减少.

再提问:你能仿照第(1)题的解答,自己解决(2)吗?

【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点.通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词.

问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?

学生总结,师生共同补充、完善.要总结出:

(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;

(2)选定一方用正数表示,那么另一方就用负数表示;

(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;

(4)当数据没有变化时,增长率是0.

【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论.一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负.

问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案.

【设计意图】让学生用刚刚总结出的结论解决问题.

4.巩固概念,学以致用

练习:教科书第3页练习1,2.

【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况.

5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)你能举例说明引入负数的必要性吗?

(2)你能用例子说明负数的意义吗?

(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数.你能举例说明吗?

6.布置作业:教科书习题1.1第1,2,4,8题.

五、目标检测设计

1.以下各数20__年07月08日 - 一帆风顺 - 一帆风顺祝大家健康快乐!天天都有好心情中,正数有 ;负数有 .

【设计意图】考查对正数、负数概念的理解.

2.向东行进-50 m表示的实际意义是 .

【设计意图】会用正数、负数表示具有相反意义的量.

3.下列结论中正确的是( )

a.0既是正数,又是负数

b.o是最小的正数

c.0是最大的负数

d.0既不是正数,也不是负数

【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫.

4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义.

主题中国数学起源心得体会报告四

本节课在教学时,总体感觉很顺畅,学生思维活跃

1、本课从实际生活情景引入,让学生产生疑问,从而引出百分数。

本课开始,设计了一个网上竞答:李斯同学答25题,对22题;张良同学答20题,对18题;刘清同学答50题,对46题,你觉得那位同学可以参加下一轮的比赛呢?学生开始了积极思考,说出了以下几种结果:“刘清,因为他答对的最多。”“张良,他答错的最少”“我比较正确率”。在学生否定了第一第二位同学的回答之后,我再和大家一起讨论第三位同学汇报的结果,自然引出如何比较正确率,转化为分母为100的分数的比较,在将这些分数改写成百分数的形式,学生在自己解决问题的过程中了解了百分数的含义。

2、通过课前收集百分数信息,课上汇报,主动去理解百分数的含义。

百分数的含义只有一句话,如果老师教给学生只要几分钟,但真正理解它还需要下翻功夫。因此,我想教给他们不如让他们自己来理解领悟。学生收集了很多信息,如“羊毛70%”,“橙汁含量〉10%”等等,让他们说出含义之后再问学生,到底什么叫百分数?在理解的基础上学生自己总结,印象深刻,理解透彻。

《扇形统计图》的教学反思(九)

我上了一节“扇形统计图”,课后有如下反思:

成功之举

1、激发学生思维,给学生更多的思考空间

课上我是通过提问发散性问题来激活学生思维。如:“从这幅图中你能想到什么”学生回答五花八门,多是肤浅的问题,但参与面很广。接着第二次提问:“从这幅图中你还能想到什么”学生的回答转向一些具体问题。如:“我们一般用圆表示--------。用扇形表示---------,扇形的大小表示——”等等。

2、促成情感目标的落实

如提问:“作为发展中国家的公民你应该怎样去做。”从而激发学生的民族自尊心。

败笔之处

1、有些题目讲的太快部分学生没有跟上,特别是第七张幻灯片中计算扇形b表示的人数和c表示公顷数时讲的不透彻。

2、没有掌握好时间,整节课前松后紧,以至于有点拖堂。

主题中国数学起源心得体会报告五

一、调查目的

在思想道德中,社会公德是最基本的,也是最贴近我们生活实际的。针对当今大学生的社会公德状况,我做了一次社会调查。

二、调查对象及方法

1、调查对象: 铜陵学院在校大学生

2、资料收集方法: 采用问卷调查方法调查。向所取得的样本中的个体发放《大学生公德意识问卷调查》了解学生在平时生活中公德意识基本情况。

3、调查方法:对铜陵学院的全部学生进行进行随机抽样调查,分共发放50的问卷,调查文卷问题采用单选回答的方式总共12题。

三、调查的内容:

调查结果分析:

对答案进行分析

1、通过对调查表的收集整理,得到以下数据:参加调查的男生有25名、女生有25名

社会公德是指在社会交往和公共生活中公民应该遵守的道德准则。《公民道德建设实施纲要》明确指出,社会公德“涵盖了人与人、人与社会、人与自然之间的关系”。在人与人之间关系的层面上,社会公德主要体现为举止文明、尊重他人;在人与社会之间的关系层面上,社会公德主要体现为爱护公物、维护公共秩序;在人与自然的关系层面上,社会公德主要体现为热爱自然、保护环境。我这次调查的问题主要选择针对于这三个方面

总体情况

调查显示,现在大学生社会公德意识整体上比较强。

人与人之间的关系(第2-5题)

在本次调查当中,对于社会公益活动有70%的人选择“肯定参加”,有20%的人选择“看情况”,另外有10%的人选择“没兴趣,不参加”。参加公益活动是大学生社会公德的良好表现,它体现了一种无私奉献的精神,一种强烈的社会责任感。对于不太喜欢参与社会公益活动的同学,学校也应该给予积极的鼓励与引导。

文明礼貌是人与人交往中必然的道德要求,是调整和规范人际关系的行为准则,而且体现在日常生活中的细微之处。比如:尊重师长,主动让座等。在我们的调查中,86%的被调查者在打电话给老师、学长都会礼貌用语。这说明当代大学生对尊师长的认知程度较高,且能付诸行动。在公交车上遇到老人、妇女、儿童或残疾人对我们大学生很常见的事。让个位子也是很简单很容易办到的事。在本次调查中有50%选择“一定会”,4%的人选择“不会”还有46%的人选择看情况。给尊老爱幼让座也是我们中国传统美德,我觉得大家应该积极主动的让我培养自己良好的个人素质。这说明广大大学生对让座这一行为都是持赞同态度的,因为二者之和占了96%,但做到能始终如一的人却只有半数。这说明我们大学生在文明礼貌这一点上的素质还能再提高一个新的档次。

再关于你认为大学生肆无忌惮的说脏话的问题调查中,98%的女生人认为不好,既不文明也不好听 。2%的女生认为一般般,它在一定情况下可以作为语言武器。0%女生无所谓对此没什么感觉。40%男生认为没什么感觉。20%的男生认为一般般,40%的男生认为不好。我们在大学中我们应该积极培养自己文化修养,女生在这方面普遍较好,而男生有很大一部分认为无所谓。我认为这是不好的现象大家应该积极主动的加以改正。

人与社会(我们与学校)(第6-9题)

遵纪守法的实践是提高人们社会公德水平的一个重要途径。在社会公共生活领域中,人员构成复杂,素质参差不齐,正常生活秩序可能受到影响,这就需要用纪律与法规来维持。大学生应当全面了解各项法律法规,熟知校纪校规,牢固法制观念,“以遵纪守法为荣,以违法乱纪为耻”,自觉遵守相关纪律和法规。在我们关于考试做弊的调查中,竟有70%的同学认为做弊不足为怪。有54%的人根本不相信有从未作弊的大学生的存在!这反映出的不仅仅是一个学术道德问题,同时也反映出当代大学生的规则意识不强。许多大学生过早的有了世故圆滑、投机取巧的意识。

最近学校正在倡导文明就餐。对此我也做了个调查。有60%食堂吃完饭会送主动盘子给食堂阿姨。34%的人因为文明就餐员的关系改正才送。还有6%的人不愿意送餐盘。对于送餐盘我个人认为是非常好的行为,能保持校园食堂的干净整洁。学校就餐风气也是很对的大家应该积极响应、积极参加。

另外我们校园中打饭很少排队尤其二生活区。从数据上看男生90%选的c。在二生活区的男生大家不会主动排队,他们觉得如果排队的话就会很吃亏打不到好菜。女生一生活区情况要好些,80%的人都会排队以及鼓励大家排队。仅有20%的人选择“据是否涉及自己利益而定”。这个现象需要学校给予措施来纠正。

人与自然(第10-12题)

环境保护也是社会公德的一个重要组成部分,是大学生义不容辞的责任。随着我们周边环境的日益改善,大学生逐渐意识到爱护公物保护环境的重要性。根据调查了解,近道而践踏草坪,有88%的同学会“偶尔”只有2%的人会选“a从不(如果看见别人有这样的行为,还会上前制止)在保护草坪这方面,大部分同学还做得不够,大家可以看到很多草中被踩出一条路。

根据调查,当外出制造了垃圾却暂时找不到垃圾箱时,有80%的同学会“找到垃圾箱后再丢”,有6%的人选择“随手丢掉”,另外有14%的人可能碍于面子,会“找个角落再丢”。在不破坏环境卫生这方面,大部分同学还做得不错。然而对于更加积极的态度来对待环境保护时,我们大学生做得还远不够。比如,当看到地上有垃圾时,只有6%的人会马上弄干净,而有80%的人想弄干净但最终没做,其余14%的人干脆不理它。分析主要原因,是因为我们现在的大多数人都爱面子。大家都不去做而我一个人做很别扭,所以在可以选择逃避的时候尽量逃避。对于以上这些现象,我们每一位有责任感的大学生都应该行动起来。

综上分析,当代大学生的社会公德状况良好,基本符合一名当代合格大学生的标准,但我们仍有很多方面的不足。我们应时刻谨记肩上的神圣责任,时刻以社会公德典范的标准严格要求自己,发扬优点,弥补不足,让自己变得更完美,更好地做一名合格的大学生。

主题中国数学起源心得体会报告六

数学教师,其首要任务是树立正确的数学观,积极促进自己的观念改变,以实现由静态的,片面的、反论的数学观向动态的,辩正的模式论的数学观的转变。特别实现对上述问题的朴素的不自觉的认识向自觉认的转化,要以发展的眼光对待学生,做到眼中有人,心中有人。“眼中有人”是指关注现在的学生,培养学生的自主性、主动性和创造性。认识并肯定学生在教学过程中的主体地位,爱护尊重学生的自尊心与自信心,培养学生自觉自理能力,激发学生的兴趣和求知欲,主动参与性,要尊重学生的差异,不以同一标准去衡量学生,更不要以学生的分数论英雄。教师要多鼓励学生提出“为什么?”“做什么?”怎样做?”鼓励学生敢于反驳,挑战权威,挑战课本,培养学生的创新精神。

对于初一、初二数学教育教学工作,我认为应从以下几个方面进行反思:

1、面向全体,因材施教

学生的个体差异是客观存在的,每个学生都有独特的个性和特长,都潜藏着许多“闪光点”和存在各自的薄弱点。教师应了解学生的个别差异,在课堂教学中既要做优生的培养又要照顾中等生,更要注意后进生的转化,所以在教学过程中要因材施教,实行分层次教学,加强个别辅导、设计不同层次的问题,尽可能给各类学生提供获得成功的机会。

2、抓好“三基”教学

“三基”教学是指基础知识教学、基本技能训练、基本能力培养。初中数学教学大纲中指出“初中数学基础知识是初中代数、几何中概念、法则、性质、公式以及由内容反映出的数学思想和方法”,技能是应用基础知识按照一定程序及步骤来完成的动作、能力,是对思想材料进行加工的活动过程的概括。“三基”教学是抓好素质教育的基础,是学生进一步学习和发展的基石。

3、优化课堂教学结构,发展思维

“数学是思维的体操”素质教育要求注意培养学生的智力和能力,而思维是智力的核心,能力的培养又依赖良好的思维品质的形式,因此课堂教学中发展学生的思维能力是素质教育深入教学的重要体现。教师在教学中应优化课堂结构,使学生参与教学过程,从而发展学生的思维。

4、挖掘教材德育素材,进行思想教育

良好的个性品质是指正确的学习目的,浓厚的学习兴趣,顽强的学习毅力,实事求是的科学态度,独立思考、勇于创新的精神和良好的学习习惯。 在教学中结合知识的传授,恰当介绍中国古今数学的伟大成就,使学生了解祖国丰富的科学贡献逐步提高学生自尊心和自信心,使学生意识到有责任继承民族的光荣传统,使学生有良好的思维品质和良好的个性品质以及纯正的思维素质,也只有真正把提高全体学生的素质教育落实到数学教学的全过程才能适应21世纪人才素质需要的根本要求。

如果把课堂教学比之为演奏一首优美的乐曲,那么备课就是谱曲了。反思一下,着重修正三点:

1、备教材。进一步花功夫吃透教材,科学处理教材。课本中的例题(习题)往往显得层次不强,对照例题(习题)精心设计一些铺垫或引申的题目,形成例题组,让不同层次的学生获得各自的成功。做好每节课的理性审视工作,今天的课哪些地方成功了,哪些地方失败了,哪些地方还需改进,不断总结成败得失。

2、备学生。备学生是备课的难点,难在每一个学生都是一个参差不齐的思维体。要做到经常自觉地深入学生,从课内外的每一个环节了解和研究学生,一个重要的工作要做好面批作业,尽最大可能亲自来到每一位学生身边,问:你是怎么想的?让学生在交流中展示自己的认识过程,边探讨,边批改,改善师生感情,使学生做作业更具有纠正错误的主动性。

3、备练习。要从巩固教学成果、检测教学效果的前提出发,精心选择作业,具体做好三点:①与本课密切对应的最能强化教学重点的练习;②要符合本课的练习,需要以前学过的哪些知识,这些知识在学生脑海里的生疏程度如何,怎样诱导;③针对学生出错的原因,在课堂教学中舍得花时间让学生反思解题过程中的易错点,给学生提供一个对基础知识重新理解的机会,从而深刻理解基础知识。

1、正确认识学生的差异,因材施教

按照多元智力理论,许多数学学困生实际上就是在语言智力和数理逻辑智力方面具有弱势,而在其它某一种或某几种智力方面具有相对优势的学生。如果这些学生找到适合自己的学习方法,即善于利用自己的优势智力来学习,那么他们完全能够像其他学生一样取得好成绩。这就要求教师在教学过程中要选择适合学生不同特点的教育方法,有效地因材施教。

2、指导学习方法,培养良好学习习惯

针对学生缺乏数学学习策略,不会对信息进行加工储备,不会反思调控自己的数学认知过程与方法,教师应在弥补知识缺陷的过程中,以数学学习和问题解决为载体,让学生认识数学思维活动的特点,尽可能让他们掌握较多的基本学习方法和学习技能,培养善于灵活应用各种方法的能力。例如,讲授“一元一次不等式组的解法”时,学生对确定不等式组的解集的方法感到抽象难掌握。我教给他们两种方法,一是口诀法:“同大取大;同小取小;大小小大中间找;大大小小找不了。”学生觉得易懂、好记、轻松;二是数形结合法:先通过画线把各不等式的解集表示在数轴上,再看数轴上被各条线都覆盖的那一部分所表示的数,即为不等式组的解集。学生感到这样的方法形象、直观,便于操作理解,收到了很好的教学效果。

3、注重培养学习数学的兴趣,激发学习积极性。

首先,通过直观教学吸引学困生的注意力,使学生理解概念、性质。其次,加强对教学语言的艺术应用,让教学生动、有趣。课堂教学中教师要特别注意观察学困生的学习情绪,应恰当运用生动活泼的教学语言及相关有趣的事例,活跃课堂气氛,引导每位学生进入积极思维状态。再次,创设情境,激发兴趣。可以充分利用生活中的数学,挖掘数学的美,进行美的创造、美的教育;可以巧妙设障,营造悬念;可以进行教学的再创造,再发现,再探索等等,使得学困生在愉快的教学诱导下激发起对数学的兴趣。最后,教师还应注重情感教育。学困生尤其需要教师对他们的关心和爱护。当他们失败时,教师要及时给予心理抚慰,主动帮助他们分析原因和克服困难;当他们有进步时,要及时给予鼓励和肯定,使他们体验成功的喜悦。如尽管已经看出学生某道题的计算是错误的,但还是以亲切的话语启发学生,使学生既能感到自己的进步和希望,同时又找到了自己的错误与不足。

4、分层设计练习和试题,给学生体验成功的机会。

在一堂课内安排两次反馈。第一次反馈——尝试练习,如发现问题,及时补充讲解,起强化、调节作用;第二次反馈——课堂作业,如再发现缺陷,当堂就能补救。精心设计每个练习,做到有的放矢,在反馈基础上,重视讲评,具体地帮助学困生弥补知识缺漏,使之切实掌握所学知识,并在实际运用中,逐渐形成技能技巧。在布置作业时,要注意难易程度,要对学困生辅导、转化,督促他们认真完成。对作业做得较好或作业有所进步的学困生,要及时给予表扬鼓励;在出试卷时,要有意识地出一些较易的题目,培养他们的信心,让他们尝到甜头,使他们意识到自己也可以学好的,并在考试前对他们提出具体的要求,对知识的薄弱点进行个别辅导,这样就可能使有些学困生经过努力也会得较高分数的机会,让他们感到自己只要“跳一跳,就能摘到桃子“的成功感,逐步改变他们在学习上总是比别人差一等的印象,逐步培养他们,激励他们积极争取,努力向上。

数学教学的过程不仅是促进学生学习的过程,也是教师指导自己认识自我的过程。数学教师大胆探索,用智慧经营教学,用感情去灌溉学生,为提高学生的数学素质而作出自己最大的努力。

主题中国数学起源心得体会报告七

在这一段时间的培训中,我认真地看了各位专家对于小学数学新课标的解读,尤其对他们讲解的小学数学教学中各个方面的问题、今后改进的措施、办法进行了深刻的理解和领悟,小学数学研修总结博客。确实收获不小,感觉自己在日常工作中还存在很多不足。通过这次培训,我有如下感想:

这次学习使我的思想有了更深层次的转变。作为一名小学数学教师,必须具有渊博的知识,良好的思维品质,这些还远远不够。我们要在数学学习探究过程中,不再把数学知识的传授作为自己的主要教学任务和目的,也不再把主要精力花费在检查学生对知识掌握的程度上,而是要成为学习集体中的成员,在问题面前教师和学生们一起寻找答案,在探究数学的道路上教师成为学生的伙伴和朋友。

面向全体学生我们应做到:

1、创设各种情景,鼓励学生大胆地实践,对他们在学习过程中的失误和错误采取宽容的态度;

2、为学生提供自主学习和直接交流的机会,以及充分表现和自我发展的一个空间;

3、鼓励学生通过体验、实践、合作、探索等方式,发展听、说、读、写的综合能力;

4、创造条件让学生能够探究他们自己的一些问题,并自主解决问题。

学生只有对自己、对学科及其文化有积极的情态,才能保持学习的动力并取得成绩,刻板的情态,不仅会影响学习的效果,还会影响其它发展,因此我们要努力创造宽松民主、和谐的教学空间。关注学生我们应做到:

1、尊重每个学生,积极鼓励他们在学习中的尝试,保护他们的自尊心和积极性;

2、把教学与情态有机地结合起来,创造各种合作学习的活动,促进学生互相学习,互相帮助,体验成就感,发展合作精神;

3、关注学习有困难的或性格内向的学习,尽可能地为他们创造语言的机会;

4、建立融洽、民主的师生交流渠道,经常和学生一起反思学习过程和学习效果,互相鼓励和帮助,做到教学相关。

新课程强调“数学教育要从以获取知识为首要目标转变为首先关注人的发展”、“转变为首先关注每一个学生的情感、态度、价值观和一般能力的发展”。在此,特别需要指出的是:数学教育中学生“情感、态度、价值观”的发展应是与其数学知识与技能方面的学习直接相联系的,也即在两者之间存在内存的、必然的联系,而不是某种外在的、牵强附会的、偶然的成分。因此,我们无疑应当强调通过数学教学帮助学生树立在数学学习上的自信心,但是这绝不是指数学学习应当成为一种毫不费劲的“愉快学习”,我们应当努力增强学生对于数学学习过程中艰苦困难的承受能力,从而也就能够通过刻苦学习真切地体会到更高层次上的快乐。这也是中国数学教育优良传统的一个重要组成成分。

对学生学习策略进行指导,即让他们在学习和使用的过程中逐步学会如何学习。那么,指导学生学习策略我们应做到:

1、积极创造条件,让学生参与到阶段性学习目标,以及实现目标的方法;

2、引导学生采用推测、查阅和协调的方法进行学习;

3、引导学生在学习过程中,进行自我评价,并根据需要调整自己的学习目标和学习策略。

新课程改革不是说说而已,必须要与实践相结合,即将努力学习,积极进取,积极参与课程改革,在课堂实践教学中不断摸索,不断学习,不断实践,不断反思。我乐于参与远程研修,我也乐于与广大同仁们共同成长,我也更乐于实践课堂教学。

时代要求我们必须进步,相信在以后的工作中,我会更努力地在先进理论的指引下大力改进我的工作。

主题中国数学起源心得体会报告八

1证明一个三角形是直角三角形

2用于直角三角形中的相关计算

3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”

商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。

在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

即:

c=(a2+b2)(1/2)

定理:

如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。

如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=x*x,x=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)

来源:

毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

您可能关注的文档