函数定义的心得体会及感悟 浅谈函数思想(9篇)

  • 上传日期:2022-12-25 20:12:41 |
  • ZTFB |
  • 11页

当我们备受启迪时,常常可以将它们写成一篇心得体会,如此就可以提升我们写作能力了。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。

2022函数定义的心得体会及感悟一

1.学生进一步理解和掌握整数、小数、分数、百分数的意义,以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数,因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意思和能力,发展数感。

2.学生进一步理解四则运算的意义,理解和掌握整数、小数、分数等四则运算的算理、算法,能正确进行相关的口算、笔算和估算,以及用计算器计算;掌握四则混合运算的运算顺序,能正确进行四则混合运算;理解和掌握加法和乘法的运算律,能正确运用运算律进行一些简便运算和解决一些简单实际问题;获得必要的运算技能和运算能力;理解常见的数量关系,掌握分析和解决实际问题的基本方法,加深对常用的解决问题策略的感悟和体验,提高应用所学知识解决问题的能力。

3.学生进一步掌握用含有字母的式子表示简单数量关系的方法,初步理解等式的性质,会用等式的性质解一些简单的方程,能列方程解答两、三步计算的实际问题,提高分析问题和解决问题的能力,增强符号意识。

4.学生进一步理解和掌握比的意义和基本性质,理解比与分数、除法的关系,理解和掌握比例的意义和基本性质,会解比例;理解和掌握正比例和反比例的意义,能正确判断两种相关联的量是否成正比例或成反比例;会根据给出的有正比例关系的数据在方格纸上画图,能根据其中一个量的值估计另一个量的值;能运用比和比例等知识解决一些简单实际问题,积累解决问题的经验,增强应用意识。

5.学生进一步理解和掌握已经学过的平面图形和立体图形的特征,体会相关图形之间的联系和区别,了解有关平面图形周长、面积的计算方法,以及常见几何体表面积、体积的计算方法的推导过程,会解答有关平面图形的周长、面积,以及常见几何体表面积、体积计算的简单实际问题,发展空间观念。

6.学生进一步加深对轴对称、平移和旋转、放大与缩小等图形运动方式的认识,能正确描述图形的运动过程,能按要求再方格纸上画出运动后的图形;掌握用数对或用方向和距离描述物体位置的方法,能按要求在平面图上确定物体的位置或描述简单的行走路线,增强利用几何直观进行思考的能力。

7.学生进一步掌握常用的收集、整理、表示、分析和解释数据的方法,理解平均数的意义,了解常见的统计表、统计图的不同特点;能根据具体问题选择合适的统计表或统计图表示数据,能对统计表、统计图所呈现的数据进行一些简单的分析和思考,增强数感分析观念。

8.学生进一步了解简单随机现象的特点,体会事件发生的确定性和不确定性,知道事件发生的可能性是有大小的,能列举出简单随机事件发生的所有可能的结果,正确判断简单

随机事件发生的可能性的大小。

9.学生经历综合运用所学知识探索数学规律、解决实际问题的过程,进一步提高发现和提出问题、分析和解决问题的能力,感悟不同数学知识之间、数学与生活之间、数学与其他学科之间的联系,发展应用意识和创新意识。

10.学生经历观察与比较、分析与综合、抽象与概括、类比与归纳等思维活动过程,进一步发展合情推理和演绎推理能力,积累丰富的数学活动经验,获得关于分类、对应、转化、数形结合、方程、函数等数学思想方法的体验与感悟,提高数学素养。

11.学生在回顾学习内容、反思学习过程、完善认知结构的过程中,进一步养成良好的学习习惯,体验获取知识以及与同学合作交流的乐趣,增进对数学学习的积极情感,树立学好数学的信心。

教学重点:

复习一到六年级所学的所有内容。

教学难点:

能把所学知识灵活的综合运用。

课时安排:32课时

第1课时 整数、小数的认识整理与复习

教学内容:

苏教版六下p68~70“整理与反思”、“练习与实践”第1~9题

1.学生回顾整理整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关概念间的联系与区别,构建整数、小数认识的知识网络。

2.学生通过复习,进一步了解整数、小数的相关知识,掌握数的知识之间的联系;增强用数表达和交流信息的意识和能力,进一步发展数感。

3.学生进一步体会数在日常生活中的广泛应用;感受认数的作用,产生对数的学习兴趣,提高学好数学的自觉性。

教学重点:

整数(自然数)和小数的意义、组成及读写。

教学难点:

理解数的相关知识间的联系。

教学过程:

一、揭示课题

谈话:小学

2022函数定义的心得体会及感悟二

改进的设想:

(1)回顾任意角、象限角与轴线角的概念.

(2)回顾锐角三角函数的定义,有了任意角之后,原来三角函数的定义有局限性,需要对其重新定义,以适用于任意的三角函数.

(3)除了锐角的三角函数外,在其它学科中有没有接触到一些特殊角的三角函数值?(意图是让学生说出)

重新定义的原则有哪些?

①和谐的原则,新定义应该包含以前的定义,即当角为锐角时,其定义应与前面的三角形边的比值等价.由此可以确定,新的定义仍应是比值的形式;

②传承的原则,新定义应保留旧定义中的一些做法,如可以同样在角的终边上任取一点来定义,且所得结果应与所取点的位置无关.

③相容的原则,新定义不能与一些熟悉的结论相矛盾.如当角为钝角时,其余弦值应为负值.由此可知,新的三角函数的定义应保证所得三角函数值有正负之分;

④自然的原则,新定义不能出来得很奇怪,要让人接受必须顺其自然,可在我们前面讨论的象限角的基础上进行,换句话说,老师在给出一个任意角的时候,就可以将角直接放在直角坐标系下,因为前面已讨论过象限角.

按上述几个原则让学生自主探究.

2022函数定义的心得体会及感悟三

课题:正比例函数的性质

课型:展示课+反馈课

授课人:高丽

地点:乔集中学八(7)班教室

过程简介:

课前每组把本组要处理的知识或题目提前写在各自黑板上,先由四个小组处理本课的基本知识,其中一个小组陈述课题,两个小组通过描点、连线、画图,画出两个不同类型的正比例函数的图像,最后一个小组根据前面的图像得出了结论:正比例函数的性质。

第二阶段是由两个小组应用所得结论,处理课本上的两个练习题

第三阶段是五个小组分别用一个题目进行了知识的扩展,使学生的知识运用有了进一步提高。

第四阶段是一个小组对本节课的内容进行小结,最后老师布置了作业。

优点:

1、整体感觉是学习过程逻辑清晰,小组分工明确,学生主体地位体现充分,学生配合好,课堂气氛活跃;

2、学生充分小老师角色非常到位,有讲有问,学生回答积极配合;

3、教师穿插点评、补充、总结、讲解,少好精;

4、整个教学过程分为四部分:基本知识、知识应用、扩展部分、总结部分。前后紧密相连,由易而难,步步推进;

5、充分体现了杜郎口模式的10+35原则、学生为主体原则、分作协作原则,是一个非常成功的课。

建议:

1、第5组在提出如何用简单的办法画函数图像是,老师不应代为回答,动员其他学生回答,并把结论板书在黑板上;

2、第6组有个同学在讲解不清楚,老师不应代为讲解,应动员其他学生来讲;

3、扩展的题目有点偏难过繁,拔的太高。

借鉴:

把展示课与反馈合二为一,不同组分领不同类型的任务。

2022函数定义的心得体会及感悟四

我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。

孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。

一、在解题的方法规律处反思

“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。

例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。

变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)

变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)

变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)

变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。

变式5 已知等腰三角形的腰长为x,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)

再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(ab为⊙o的直径,c为⊙o上的一点,ad和过c点的切线互相垂直,垂足为d。求证:ac平分∠dab)

通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

二,在学生易错处反思

学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, a学生的答案是“9”,老师一看:错了!于是马上请b同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。

计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:

(1)请分别指出(—2)2,—22,—2-2,2-2的意义;

(2)请辨析下列各式:

① a2+a2=a4 ②a4÷a2=a4÷2=a2

③-a3 ·(-a)2 =(-a)3+2 =-a5

④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2

解后笔者便引导学生进行反思小结.

(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。

三、在情感体验处反思

因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。

数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。

2022函数定义的心得体会及感悟五

sum函数

加法是最基本的数学运算之一。函数sum就是用来承担这个任务的。sum的参数可以是单个数字、一组数字。因此sum的加法运算功能十分强大。

统计一个单元格区域:

=sum(a1:a12)

统计多个单元格区域:

=sum(a1:a12,b1:b12)

1、合并单元格求和

如下图所示,要求在d列对a列的类别求和。

d3=sum(c3:c12)-sum(d4:d12)

注:公式输入方法,选取d3:d8,在编辑栏中输入公式后按ctrl+enter完成输入。

2、含文本型数字求和

含文本型数字的求和,用sum得不到正确的结果,可以用sumproduct函数完成

2022函数定义的心得体会及感悟六

本学期是初中学习的关键时期,学生成绩差距较大,教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务完成。初三毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面结合本届初三数学的实际情况,特制定本复习计划

一、第一轮复习(3月10号——4月10号)

第一轮复习的形式

第一轮复习的目的是要“过三关”:(1)过记忆关。必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。(2)过基本方法关。如,待定系数法求二次函数解析式。(3)过基本技能关。如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。基本宗旨:知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计与概率等;将几何部分分为六个单元:相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。复习完每个单元进行一次单元测试,重视补缺工作。

第一轮复习应该注意的几个问题:

(1)必须扎扎实实地夯实基矗今年中考试题按难:中:易=1:2:7的比例,基础分占总分(120分)的70%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。

(3)不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中要害的强化练习。

(4)注意气候。第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,五月份之后,天气酷热,会一定程度影响学习。

(5)定期检查学生完成的作业,及时反溃教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反愧矫正和强化,有利于大面积提高教学质量。

(6)从实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反辣的方法。

(7)注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学困生体验成功。

(8)应注重对尖子的培养。在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,以提高中考优秀率。对于接受能力好的同学,课外适当开展兴趣小组,培养解题技巧,提高灵活度,使其冒“尖”。

二、第二轮复习(4月11号——5月10号)

第二轮复习的形式

如果说第一阶段是总复习的基础,是重点,侧重双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。第二轮复习的时间相对集中,在一轮复习的基础上,进行拔高,适当增加难度;第二轮复习重点突出,主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。可进行专题复习,如“方程型综合问题”、“应用性的函数题”、“不等式应用题”、“统计类的应用题”、“几何综合问题”,、“探索性应用题”、“开放题”、“阅读理解题”、“方案设计”、“动手操作”等问题以便学生熟悉、适应这类题型。

第二轮复习应该注意的几个问题

(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。

(2)专题的划分要合理。

(3)专题的选择要准、安排时间要合理。专题选的准不准,主要取决于对课程标准和中考题的研究。专题要有代表性,切忌面面俱到;专题要由针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

(4)注重解题后的反思。

(5)以题代知识,由于第二轮复习的特殊性,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。

(6)专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是很难提高的,提高学生的能力,这是第二轮复习的任务。但要兼顾各种因素把握一个度。

(7)专题复习的重点是揭示思维过程。不能加大学生的练习量,更不能把学生推进题海;不能急于赶进度,在这里赶进度,是产生“糊涂阵”的主要原因。

(8)注重资源共享。

三、第三轮复习(5月11号——6月10号) 第三轮复习的形式

第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。备用的练习《历届中考真题》、《中考模拟试题》。

第三轮复习应该注意的几个问题

(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。

(2)模拟题的设计要有梯度,立足中考又要高于中考。

(3)批阅要及时,趁热打铁,切忌连考两份。

(4)评分要狠。可得可不得的分不得,答案错了的题尽量不得分,让苛刻的评分教育学生,既然会就不要失分。

(5)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。

(6)详细统计边缘生的失分情况。这是课堂讲评内容的主要依据。因为,边缘生的学习情况既有代表性,又是提高班级成绩的关键,课堂上应该讲的是边缘生出错较集中的题,统计就是关键的环节。

(7)归纳学生知识的遗漏点。为查漏补缺积累素材。

(8)处理好讲评与考试的关系。每份题一般是两节课时间考试,两节课时间讲评,也就是说,一份题一般需要4节课的时间。

(9)选准要讲的题,要少、要精、要有很强的针对性。选择的依据是边缘生的失分情况。一般有三分之一的边缘生出错的题课堂上才能讲。

(10)立足一个“透”字。一个题一旦决定要讲,有四个方面的工作必须做好,一是要讲透;二是要展开;三是要跟上足够量的跟踪练习题;四要以题代知识。切忌面面俱到式讲评。切忌蜻蜓点水式讲评,切忌就题论题式讲评。

(11)留给学生一定的纠错和消化时间。教师讲过的内容,学生要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。教师要充分利用这段时间,解决个别学生的个别问题。

(12)适当的“解放”学生,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证学生有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的最佳状态。

(13)调节学生的生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。

(14)心态和信心调整。这是每位教师的责任,此时此刻信心的作用变为最大。

2022函数定义的心得体会及感悟七

比例这部知识是在学习了比的知识上进行教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。

比例是在比的基础上讲解的,组成比例的两个比比值相等,由于比的知识是上学期学的,这么长的时间,学生的知识肯定有了一定的遗忘,所以在教学前,先带领学生回顾比的知识。什么叫比?关于比,我们学过哪些知识?什么是比值?怎样求比值?怎样化简比等等。唤醒孩子的旧知,既复习了以前的知识,又为本节课的学习提供了很好的帮助。

根据学生的认知规律,为了体现教师主导,学生主体,训练主线的指导思想,主要让学生在情境中产生问题“观察——计算——比较——概括——应用”的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本课力求做到以下几点:

1、情境中激趣

一上课,就为学生提供四个实际情境图,并提出问题:

(1)、在哪些地方见到我们国家的国旗?

(2)、你们知道国旗的尺寸吗?

出示挂图,叙述每面国旗,分别出现在什么地方?并读出长和宽。比较四面国旗不同点和相同点?(大小不同,形状相同)分别列出每面国旗长与宽的比和求比值。最后观察比较。(比值相等)分析这些比的比值,看发现了什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:首先是判断。其次是组比例。最后通过小组讨论比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。

创设这个情境有五方面的考虑:

一是使学生通过现实情境体会比例的应用;

二是“四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等”,由此引入比例意义的教学;

三是依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源;

四是为以后学习图形的放大与缩小做铺垫;

五是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”的结合,让学生通过自己的分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。

2、变“教教材”为“用教材——拓宽教材”

教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。

在练习中要根据给出的4个数据,组比例,隐含着相似三角形对应边成比例的性质。学生通过迁移比较,小组合作交流,多方验证,大家的思维从先前的不知所问到最后的豁然开朗,个个实实在在地当了一名小小的“数学家”,经历了这个愉快的学习过程,获得了成功的体验。

2022函数定义的心得体会及感悟八

日期计算公式

1、两日期相隔的年、月、天数计算

a1是开始日期(20xx-12-1),b1是结束日期(20xx-6-10)。计算:

相隔多少天?=datedif(a1,b1,"d") 结果:557

相隔多少月? =datedif(a1,b1,"m") 结果:18

相隔多少年? =datedif(a1,b1,"y") 结果:1

不考虑年相隔多少月?=datedif(a1,b1,"ym") 结果:6

不考虑年相隔多少天?=datedif(a1,b1,"yd") 结果:192

不考虑年月相隔多少天?=datedif(a1,b1,"md") 结果:9

datedif函数第3个参数说明:

"y" 时间段中的整年数。

"m" 时间段中的整月数。

"d" 时间段中的天数。

"md" 天数的差。忽略日期中的月和年。

"ym" 月数的差。忽略日期中的日和年。

"yd" 天数的差。忽略日期中的年。

2、扣除周末天数的工作日天数

公式:c2

=(if(b2

说明:返回两个日期之间的所有工作日数,使用参数指示哪些天是周末,以及有多少天是周末。周末和任何指定为假期的日期不被视为工作日

2022函数定义的心得体会及感悟九

本学期我担任了建30班数学教学工作,按照我校《学校工作计划要点》的精神,以就业为导向,以能力为核心,以技能为特色,培养高品位的劳动者和就业岗位的创造者。结合我校外学生的实际情况,现就制定教学工作计划如下:

一、指导思想

贯彻职业教育工作会议精神,以“学生会做”为课堂教学改革目标,积极构建质量兴校、科研兴校、人才强校的平台,树立新的人生观、学生观、教育观和发展观,培养高品位的劳动者、就业岗位的创造者,努力提高学校教学水平。

二、教学目标

(一)情感目标

1.通过分析问题的方法的教学,解决问题的多渠道,培养学生学习数学的兴趣;

2.给学生提供生活背景,使学生体验到数学就在身边,培养学生学数学、用数学的意识。

(二)能力目标

1、培养学生的记忆能力。在对二次曲线、复数及其应用的学习中,培养学生的记忆能力、做到记忆的准确、持久。

2、通过概念、公式的教学,解释数学规律,培养学生对数学本质问题及具体数据的记忆。

3、培养学生的运算能力。通过复数的代数形式和三角形式的互换训练,培养学生的运算能力。

4、培养学生的思维能力。通过算法与程序框图的应用,培养学生思维周密性、逻辑性,通过例题的不同的解法,培养学生思维的灵活性,掌握转化的数学思想方法和数形结合的方法。

(三)知识目标

1、理解椭圆、双曲线、抛物线的定义,掌握椭圆、双曲线、抛物线的标准方程和性质并会应用他们的性质解决有关问题。

2、掌握任意角的三角函数、三角函数公式、三角函数图像及性质、正、余弦定理及应用;

3、了解算法与程序框图。

三、教学措施

1、教学中要将传授知识与培养能力相结合,充分调动学生学习数学的积极性,培养学生概括能力,让学生掌握数学的基本方法和基本技能。

2、认真备课、批改作业、加强对学生的辅导。

3、利用业余时间加强学习,提高业务水平。

4、虚心向同行学习,听课,取长补短,提高教学水平,尽快适应职业教育

您可能关注的文档